Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 2
Article Contents

HOU Jian-wei, XING Cun-fang, DENG Xiao-mei, et al. Response of Soil Nutrient Mass Ratio Characteristics to Biochar Type and Application Rate of Straw in Prickly Ash Orchard[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(2): 80-85. doi: 10.13718/j.cnki.xsxb.2021.02.014
Citation: HOU Jian-wei, XING Cun-fang, DENG Xiao-mei, et al. Response of Soil Nutrient Mass Ratio Characteristics to Biochar Type and Application Rate of Straw in Prickly Ash Orchard[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(2): 80-85. doi: 10.13718/j.cnki.xsxb.2021.02.014

Response of Soil Nutrient Mass Ratio Characteristics to Biochar Type and Application Rate of Straw in Prickly Ash Orchard

More Information
  • Received Date: 15/03/2020
    Available Online: 20/02/2021
  • MSC: S153; S156.6

  • The differences influence of biochar type and application rate on soil nutrient quality ratio of prickly ash orchard was studied to provide theoretical reference for evaluating soil nutrient supply ability, guiding fertilization and rational utilization of straw resources. Biochar was used as additive materials from carbonization of corn, rice and rape straw at 500 ℃, and 0 (control), 1.0, 1.8 and 2.6 t·hm-2 were used as application rate. The total nitrogen (TN), total phosphorus (TP), total carbon (TC) contents and C/N, C/P, N/P of different treatment soil were analyzed and compared by ecological stoichiometric method in the prickly ash orchard of karst region of guizhou. Its contents were 0.68-1.52, 0.37- 0.61, 5.42-29.98, 7.79- 21.71, 14.65-49.15 and 1.75-2.49, respectively, which were 1.13-2.24 times, 1.08-1.65 times, 1.97-5.53 times, 1.73-2.72 times, 1.73-3.35 times and 0.95-1.35 times of the control. The contents of all the soil TN, TP, TC and C/P, N/P were improve with the increase of biochar application rate, and rape straw biochar with 2.6 t ·hm-2 reached its maximum value. Correlation analysis showed that soil TN, TP, TC were significantly or significantly positively correlated with the soil C/N, C/P, N/P changed by adding biochar, which was the greatest influence by the interaction of biochar type and application rate, followed by biochar application rate and biochar type the smallest. So the contents of soil TN, TP, TC and C/N, C/P, N/P are at low levels in the prickly ash orchard. Among them, rape straw biochar with a application rate of 2.6 t ·hm-2 is the optimal treatment to improve the soil nutrient quality ratio of prickly ash orchard.
  • 加载中
  • [1] 胡芳名, 谭晓风, 刘惠民. 中国主要经济树种栽培与利用[M]. 北京: 中国林业出版社, 2006.

    Google Scholar

    [2] 张雅蓉, 李渝, 蒋太明, 等. 贵州主要农作物秸秆资源分布及综合利用现状[J]. 贵州农业科学, 2015, 43(8): 262-267. doi: 10.3969/j.issn.1001-3601.2015.08.064

    CrossRef Google Scholar

    [3] 肖时珍, 何江湖, 曾成, 等. 白云岩喀斯特地区土壤养分及生态化学计量特征[J]. 河南科技大学学报(自然科学版), 2020, 41(2): 76-81, 9.

    Google Scholar

    [4] GAO Y, HE N P, YU G R, et al. Long-term Effects of Different Land Use Types on C, N, and P Stoichiometry and Storage in Subtropical Ecosystems: a Case Study in China [J]. Ecological Engineering, 2014, 67: 171-181. doi: 10.1016/j.ecoleng.2014.03.013

    CrossRef Google Scholar

    [5] 王绍强于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. doi: 10.3321/j.issn:1000-0933.2008.08.054

    CrossRef Google Scholar

    [6] 校亮, 韦婧, 袁国栋, 等. 田间"限氧喷雾"制备生物炭技术与炭质表征[J]. 西南大学学报(自然科学版), 2019, 41(6): 15-20.

    Google Scholar

    [7] XIE Z B, XU Y P, LIU G, et al. Impact of Biochar Application on Nitrogen Nutrition of Rice, Greenhouse-gas Emissions and Soil Organic Carbon Dynamics in Two Paddy Soils of China [J]. Plant and Soil, 2013, 370(1-2): 527-540. doi: 10.1007/s11104-013-1636-x

    CrossRef Google Scholar

    [8] ZHAO X, WANG S Q, XING G X. Nitrification, Acidification, and Nitrogen Leaching from Subtropical Cropland Soils as Affected by Rice Straw-based Biochar: Laboratory Incubation and Column Leaching Studies [J]. Journal of Soils and Sediments, 2014, 14(3): 471-482. doi: 10.1007/s11368-013-0803-2

    CrossRef Google Scholar

    [9] 侯建伟, 邢存芳, 邓晓梅, 等. 不同秸秆生物炭对黄壤理化性质及综合肥力的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(11): 49-59.

    Google Scholar

    [10] KOLB S E, FERMANICH K J, DORNBUSH M E. Effect of Charcoal Quantity on Microbial Biomass and Activity in Temperate Soils [J]. Soil Science Society of America Journal, 2009, 73(4): 1173-1181. doi: 10.2136/sssaj2008.0232

    CrossRef Google Scholar

    [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Google Scholar

    [12] 顾美英, 刘洪亮, 李志强, 等. 新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响[J]. 中国农业科学, 2014, 47(20): 4128-4138. doi: 10.3864/j.issn.0578-1752.2014.20.021

    CrossRef Google Scholar

    [13] 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8): 979-984.

    Google Scholar

    [14] YUAN J H, XU R K, ZHANG H. The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures [J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018

    CrossRef Google Scholar

    [15] 郑浩. 芦竹生物炭对农业土壤环境的影响[D]. 青岛: 中国海洋大学, 2013.

    Google Scholar

    [16] LEHMANN J, PEREIRA D, SLIVA J, et al. Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol Central Amazonia: Fertilizer, and Charcoal Amendments [J]. Plant and Soil, 2003, 249(2): 343-357. doi: 10.1023/A:1022833116184

    CrossRef Google Scholar

    [17] 张丽琼, 郝明德, 臧逸飞, 等. 长期定位条件下不同轮作系统的土壤肥力数值化综合评价[J]. 核农学报, 2013, 27(8): 1216-1226.

    Google Scholar

    [18] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

    Google Scholar

    [19] CLEVELAND C C, LIPTZIN D. C: N: P Stoichiometry in Soil: Is there a "Redfield Ratio" for the Microbial Biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. doi: 10.1007/s10533-007-9132-0

    CrossRef Google Scholar

    [20] ZHAO F Z, SUN J, REN C J, et al. Land Use Change Influences Soil C, N, and P Stoichiometry under "Grain-to-Green Program" in China [J]. Scientific Reports, 2015, 5(1): 735-751.

    Google Scholar

    [21] 杜家颖, 王霖娇, 盛茂银, 等. 喀斯特高原峡谷石漠化生态系统土壤C、N、P生态化学计量学特征[J]. 四川农业大学学报, 2017, 35(1): 45-51.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  /  Tables(5)

Article Metrics

Article views(3410) PDF downloads(229) Cited by(0)

Access History

Response of Soil Nutrient Mass Ratio Characteristics to Biochar Type and Application Rate of Straw in Prickly Ash Orchard

Abstract: The differences influence of biochar type and application rate on soil nutrient quality ratio of prickly ash orchard was studied to provide theoretical reference for evaluating soil nutrient supply ability, guiding fertilization and rational utilization of straw resources. Biochar was used as additive materials from carbonization of corn, rice and rape straw at 500 ℃, and 0 (control), 1.0, 1.8 and 2.6 t·hm-2 were used as application rate. The total nitrogen (TN), total phosphorus (TP), total carbon (TC) contents and C/N, C/P, N/P of different treatment soil were analyzed and compared by ecological stoichiometric method in the prickly ash orchard of karst region of guizhou. Its contents were 0.68-1.52, 0.37- 0.61, 5.42-29.98, 7.79- 21.71, 14.65-49.15 and 1.75-2.49, respectively, which were 1.13-2.24 times, 1.08-1.65 times, 1.97-5.53 times, 1.73-2.72 times, 1.73-3.35 times and 0.95-1.35 times of the control. The contents of all the soil TN, TP, TC and C/P, N/P were improve with the increase of biochar application rate, and rape straw biochar with 2.6 t ·hm-2 reached its maximum value. Correlation analysis showed that soil TN, TP, TC were significantly or significantly positively correlated with the soil C/N, C/P, N/P changed by adding biochar, which was the greatest influence by the interaction of biochar type and application rate, followed by biochar application rate and biochar type the smallest. So the contents of soil TN, TP, TC and C/N, C/P, N/P are at low levels in the prickly ash orchard. Among them, rape straw biochar with a application rate of 2.6 t ·hm-2 is the optimal treatment to improve the soil nutrient quality ratio of prickly ash orchard.

  • 花椒(Zanthoxylum bungeanum maxim)是芸香科,花椒属落叶小乔木,具有食用、药用价值和生态功能[1],因其对土壤质量要求不高,喜钙,成为贵州喀斯特地区退耕还林和农业供给侧结构性改革的优势树种之一. 黄壤是贵州省喀斯特地区花椒等经济林果的主要土壤类型,因其黏度大、酸性强以及肥力差等特点[2],限制了该区域花椒的良好生长. 土壤养分质量比特征对维持生态系统的可持续性和生产力起着关键性作用. 其中,土壤养分(碳、氮、磷等)是影响生态系统结构和功能的主要因素之一,其质量分数状况对植物的生长和生产力水平有着重要影响作用[3];化学计量比可以反映土壤肥力状况、土壤有机质构成、质量状况和养分供给能力以及土壤碳、氮、磷等养分的矿化状态[3-5]. 研究喀斯特地区花椒园土壤碳、氮、磷质量分数及其化学计量比对揭示土壤养分的有效性及碳、氮、磷等元素的循环与平衡作用具有重要意义. 秸秆生物质炭是作物秸秆经过高温无氧(限氧)炭化后的富碳(50%以上)产物,具有丰富的碳、氮、磷等多种养分元素和无机碳酸盐成分,其输入可以增加土壤有机碳质量分数水平,提供微生物可利用组分[6]. 同时,秸秆生物质炭具有一定的离子交换能力和吸附特性,其对营养元素(如NO3--N,NH4+-N,PO43-)的吸附和截流可以降低肥料养分的流失,提高养分利用率[7]. 生物质炭还可以通过对土壤pH值、CEC等环境的改变,间接地改变土壤碳、氮、磷的转化过程[8]. 生物质炭对土壤碳、氮、磷的影响与生物质炭原料、施用量、土壤类型以及植物种类等有关[9-10]. 当前研究多将生物质炭用于农田土壤改良,很少研究其对林业土壤养分质量比特征方面的研究,尤其是在花椒园上的施用效应更是鲜见报道,而这方面的研究将会揭示花椒园土壤养分的有效性及碳、氮、磷等元素的循环与平衡作用以及拓展生物质炭的施用范围. 因此,笔者开展不同秸秆生物质炭与施用量对花椒园土壤碳、氮、磷质量分数及其化学计量比的影响研究,分析土壤养分质量比特征,以期为进一步评价花椒园土壤养分供给能力、指导施肥和秸秆资源的合理利用提供参考.

1.   材料与方法
  • 试验地为2017年新建花椒园(N 28°11′37″,E 108°13′31″),合计约0.3 hm2,品种为九叶青. 土壤类型为黄壤,pH值为4.5~5.0. 该地属中亚热带季风性湿润气候,海拔430 m,全年平均气温为13~17 ℃,无霜期295 d,年均日照时数1 045 h,夏半年(4-9月)735 h,冬半年(10月-次年3月)310 h. 土壤理化性质如表 1所示.

  • 生物质炭:玉米秸秆生物质炭、水稻秸秆生物质炭和油菜秸秆生物质炭,由辽宁金和福有限公司生产(炭化温度500 ℃,炭化时间6 h),生物质炭的理化性质如表 1所示.

  • 本试验将生物质炭类型(玉米秸秆、水稻秸秆和油菜秸秆生物质炭)和生物质炭施用量(0,1.0,1.8,2.6 t/hm2,即每株施用0,0.6,1.0,1.4 kg)完全组合设计为10个试验处理(表 2). 于2017年2月5日栽植花椒时,按照试验设计比例将生物质炭与打穴土壤混合均匀一次性施入. 小区面积20 m×10 m=200 m2,随机区组排列,3次重复,园区管理同常规花椒园.

    于2019年7月15日采收花椒时在每小区内分别选取10株长势相近的单株为试验对象,在距离树干0~15 cm范围内截取花椒根系,用抖落法采集根际土壤,去除杂物,土样混合均匀作为一个土壤样品,装入自封袋带回实验室,风干、过0.15 mm孔径筛网进行土壤养分分析.

  • 参照《土壤农化分析》[11]方法,全氮采用开氏定氮法测定,全磷采用钼锑抗比色法测定,全碳采用元素分析仪(elementar, Vario Macro,德国)测定,C/N,C/P和N/P分别用全碳、全氮和全磷质量分数的比值计算.

  • 数据经Excel 2010整理后,用SAS 9.0统计软件进行数理统计,在符合正态分布的情况下进行one way ANOVA单因素方差分析,采用多重比较方法对数据进行差异显著性检验,在SAS 9.0上采用Pearson法进行相关性分析.

2.   结果与分析
  • 与对照比较,不同秸秆生物质炭均明显增加了花椒园土壤的全氮、全磷(图 1)和全碳质量分数(图 2),增幅分别为13.2%~123.5%,8.1%~64.9%和96.7%~453.1%,均值分别为57.7%,35.7%和271.4%. 当生物质炭的施用量相同时,土壤的全氮、全磷和全碳质量分数均表现为油菜秸秆生物质炭处理最大,分别为0.92~1.52,0.44~0.61,14.57~29.98 g/kg;当生物质炭类型相同时,土壤的全氮、全磷和全碳质量分数均随着生物质炭施用量的增加而增大,且均在油菜秸秆生物质炭处理达到最大值.

  • 不同生物质炭处理中土壤C/N,C/P和N/P均随着生物质炭施用量的增加而增大(表 3),其中,不同生物质炭处理土壤的C/N和C/P增幅相对较大,分别为对照的1.73~2.72倍和1.73~3.35倍. 不同生物质炭处理中土壤C/N均在7.79~21.71之间,以RIBC-1.8最高,为21.71,与RIBC-2.6(20.85)差异无统计学意义;以CK最低,为7.97. 不同生物质炭处理中土壤C/P为14.65~49.15,其中RABC-2.6处理最高,为49.15,显著高于其他处理;以CK最低,为14.65. 不同生物质炭处理的N/P为1.75~2.49,是对照1.84的0.95~1.35倍,其中RABC3-2.6最高,为2.49,MABC-1.8最低,为1.75.

  • 土壤碳、氮、磷养分质量分数与其生态化学计量比的相关性如表 4所示,土壤全氮与全磷、全碳、C/P,N/P均呈极显著正相关关系(p < 0.001),与C/N呈显著正相关关系(p < 0.05);土壤全磷与全碳、C/N,C/P均呈极显著正相关关系(p < 0.001),与N/P呈显著正相关关系(p < 0.05);土壤全碳与C/N、C/P、N/P均呈极显著正相关关系(p < 0.001). 说明施用生物质炭能够显著影响土壤碳,氮,磷质量分数,进而也影响了土壤C/N,C/P,N/P及其相互关系.

  • 土壤碳、氮、磷养分质量分数与其生态化学计量比的差异性如表 5所示. 表 5中,BT表示生物质炭类型,BA表示生物质炭施用量,BT*BA表示生物质炭类型及施用量的交互作用. 不同生物质炭处理中,生物质炭类型、生物质炭施用量以及生物质炭类型与施用量的交互作用均会引起土壤碳、氮、磷质量分数及其化学计量比的差异性,其中生物质炭类型及施用量的交互作用对其差异性影响最大,生物质炭施用量次之,生物质炭类型最小.

3.   讨论
  • 施用玉米、水稻和油菜秸秆生物质炭显著提高了土壤的碳、氮、磷养分质量分数,与前人研究结果一致[12-13]. 在以往的研究中证实,不同类型的秸秆生物质炭对不同类型土壤均具有提高其全量碳、氮、磷养分的作用,如利用小麦秸秆生物质炭改良新疆风沙土和灰漠土[12],花生壳生物质炭改良黄棕壤[14]的试验均证明,生物质炭具有提高土壤碳、氮、磷养分的作用,但不同生物质炭对不同土壤养分的提升幅度不同. 总结以往研究,生物质炭对土壤养分质量分数的提高可以概括为3个方面:其一,因为生物质热解制备生物质炭的过程中对其N,P,K,Ca,Mg,S等矿质营养元素高度浓缩或富集,生物质炭施用后提高了土壤养分质量分数[14]. 其二,生物质炭疏松多孔,比表面积巨大,可以降低养分淋溶损失,持留土壤养分[15]. 其三,生物质炭能够增加土壤主要阳离子(K,Mg,Ca,Mn,Zn,Cu等)的可给态质量分数,通过提高土壤养分有效性来供给植物生长的必需营养元素[16].

    土壤碳、氮和磷质量分数随着生物质炭施用量的增加而增大,其平均质量分数由高到低的顺序均为:油菜秸秆生物质炭、水稻秸秆生物质炭、玉米秸秆生物质炭. 根据全国第二次土壤普查养分分级标准[17]对比发现,该花椒园土壤碳、氮和磷质量分数分别处于六级(0,6] g/kg、五级(0.5,0.75] g/kg和五级(0.2,0.4] g/kg. 当施用2.6 t/hm2的油菜秸秆生物质炭后,土壤碳(29.98 g/kg)、氮(1.52 g/kg)和磷(0.61 g/kg)质量分数分别处于三级(20,30] g/kg、三级(1,1.5] g/kg和四级(0.4,0.6] g/kg. 说明油菜秸秆生物质炭对提高土壤碳、氮和磷质量分数具有更突出作用.

  • 本研究中花椒园对照土壤的C/N为7.97,低于中国平均水平(10.00,12.00][18],施用生物质炭后,除了施用1.0 t/hm2条件下的玉米秸秆生物质炭(13.84)和水稻秸秆生物质炭(13.76)高于中国平均水平(10.00,12.00][18],低于全球平均水平(14.30)[19]外,其他处理均高于全球平均水平. 表明花椒园土壤有机质较低或其分解和矿化速率较快,易导致土壤养分无效消耗,而施用生物质炭能够很好地补充土壤碳库.

    花椒园对照土壤C/P为14.65,施用生物质炭后其变化范围为25.38~49.15,表明施用生物质炭虽然增加了土壤C/P,但其均低于中国平均水平(136.00)和全球平均水平(186.00)[20]. 一方面,根据全国第二次土壤普查养分分级标准[17],土壤全碳质量分数由原来的五级(6,10] g/kg提高到三~四级(10,30] g/kg,土壤全磷质量分数由原来的五级(0.2,0.4] g/kg提高到四级(0.4,0.6] g/kg,说明土壤全碳较土壤全磷升幅相对较大,但均处于较低水平,因此导致该花椒园土壤C/P虽有提高,但仍低于中国或全球平均水平的这种结果. 另一方面,该花椒园土壤C/P普遍较低还可能与土壤碳水平较低,而磷净矿化有效性增加有关[3],这将会有利于花椒的生长.

    不同生物质炭处理均改变了土壤N/P(1.75~2.49),是对照1.84的0.95~1.35倍,其中施用1.0 t/hm2和1.8 t/hm2的玉米秸秆生物质炭土壤N/P下降了0.54%和4.89%,其他生物质炭处理土壤N/P(1.96~2.49)较对照虽有提高,但仍低于全球平均水平(13.10)[20]和中国平均水平(9.30)[21],表明该花椒园土壤缺磷可能性较小,土壤氮表现出相对缺乏的状态. 但是通过对比全国第二次土壤普查养分分级标准[17]发现,该研究区土壤氮和磷质量分数均较低,因此后续施肥应在重施氮肥的同时补充磷肥从而保障花椒的正常养分供给.

4.   结论
  • 花椒园土壤的全碳、全氮、全磷质量分数及其化学计量比均处于较低水平,施用玉米、水稻和油菜秸秆生物质炭具有显著的提高作用,且其施用量越大土壤碳、氮、磷质量分数越高.

    综合土壤碳、氮、磷质量分数及其化学计量学特征,建议该花椒园施用2.6 t/hm2的油菜秸秆生物质炭,同时重施氮肥并补充磷肥从而保障花椒的正常养分供给.

Figure (2)  Table (5) Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return