Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 6
Article Contents

HU Hua-bi, ZHAO Ping. On Classification of Maximal (Regular) Subsemigroups of Semigroup $ \mathscr{T}$n, r[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(6): 5-8. doi: 10.13718/j.cnki.xsxb.2021.06.002
Citation: HU Hua-bi, ZHAO Ping. On Classification of Maximal (Regular) Subsemigroups of Semigroup $ \mathscr{T}$n, r[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(6): 5-8. doi: 10.13718/j.cnki.xsxb.2021.06.002

On Classification of Maximal (Regular) Subsemigroups of Semigroup $ \mathscr{T}$n, r

More Information
  • Corresponding author: ZHAO Ping
  • Received Date: 21/05/2020
    Available Online: 20/06/2021
  • MSC: O152.7

  • Let $ \mathscr{J}_n$ and $ \mathscr{T}_n$ be the symmetric group and the full transformation semigroup on Xn={1, 2, …, n}, respectively. For 1≤rn, put $ \mathscr{T}$(n, r)={α∈$ \mathscr{T}_n$: |im(α)|≤r}, then the sets $ \mathscr{T}$(n, r) are the two-sided ideals of $ \mathscr{T}$n. For 1≤rn-1. In this paper, the semigroup ${\mathscr{T}_{n, r}} $=$ \mathscr{T}_n$(n, r)∪$ \mathscr{J}_n$ has been considered, and it has been proved that the ${\mathscr{T}_{n, r}} $ has exactly two classes of maximal subsemigroups: S=${\mathscr{T}_{n, r}} $\[τi](1≤ip=pr(n)) and S=$ \mathscr{T}$(n, r)∪G, where G be a maximal subgroup of the symmetric group $ \mathscr{J}_n$. In addition, this paper proved that the maximal subsemigroups and the maximal regular subsemigroups of ${\mathscr{T}_{n, r}} $ coincide. The paper extends the results.
  • 加载中
  • [1] YOU T J. Maximal Regular Subsemigroups of Certain Semigroups of Transformations [J]. Semigroup Forum, 2002, 64(3): 391-396. doi: 10.1007/s002330010117

    CrossRef Google Scholar

    [2] YANG H B, YANG X L. Maximal Subsemigroups of Finite Transformation Semigroups K(n, r) [J]. Acta Mathematica Sinica, 2004, 20(3): 475-482. doi: 10.1007/s10114-004-0367-6

    CrossRef Google Scholar

    [3] DIMITROVA I, KOPPITZ J. On the Maximal Regular Subsemigroups of Ideals of Order-Preserving or Order-Reversing Transformations [J]. Semigroup Forum, 2011, 82(1): 172-180. doi: 10.1007/s00233-010-9272-8

    CrossRef Google Scholar

    [4] DIMITROVA I, FERNANDES V H, KOPPITZ J. The Maximal Subsemigroups of Semigroups of Transformations Preserving or Reversing the Orientation on a Finite Chain [J]. Publicationes Mathematicae Debrecen, 2012, 81(1): 11-29.

    Google Scholar

    [5] ZHAO P. A Classification of Maximal Idempotent-Generated Subsemigroups of Finite Orientation-Preserving Singular Partial Transformation Semigroups [J]. Semigroup Forum, 2012, 84(1): 69-80. doi: 10.1007/s00233-011-9333-7

    CrossRef Google Scholar

    [6] ZHAO P. Maximal Regular Subsemibands of Finite Order-Preserving Transformation Semigroups K(n, r) [J]. Semigroup Forum, 2012, 84(1): 97-115. doi: 10.1007/s00233-011-9347-1

    CrossRef Google Scholar

    [7] ZHAO P, YANG M. Locally Maximal Idempotent-Generated Subsemigroups of Finite Orientation-Preserving Singular Partial Transformation Semigroups [J]. Algebra Colloquium, 2013, 20(3): 435-442. doi: 10.1142/S1005386713000412

    CrossRef Google Scholar

    [8] ZHAO P. Locally Maximal Regular Subsemibands of SOPn[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2014, 37(3): 881-891.

    Google Scholar

    [9] ZHAO P, HU H B, YOU T J. A Note on Maximal Regular Subsemigroups of the Finite Transformation Semigroups $\mathscr{T} $(n, r) [J]. Semigroup Forum, 2014, 88(2): 324-332. doi: 10.1007/s00233-013-9523-6

    CrossRef $\mathscr{T} $(n, r)" target="_blank">Google Scholar

    [10] AYIK G, AYIK H, HOWIE J M. On Factorisations and Generators in Transformation Semigroups [J]. Semigroup Forum, 2005, 70(2): 225-237. doi: 10.1007/s00233-004-0145-x

    CrossRef Google Scholar

    [11] 张传军, 朱华伟. 半群n的极大幂等元生成子半群[J]. 西南师范大学学报(自然科学版), 2016, 41(12): 11-15.

    Google Scholar

    [12] ZHAO P, HU H B, YOU T J. Maximal Regular Subsemibands of the Finite Order-Preserving Partial Transformation Semigroups PO(n, r) [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40(3): 1175-1186. doi: 10.1007/s40840-016-0344-0

    CrossRef Google Scholar

    [13] 罗永贵. 半群LD(n, r)的极大正则子半群[J]. 西南师范大学学报(自然科学版), 2017, 42(8): 32-37.

    Google Scholar

    [14] ZHAO P. Maximal Regular Subsemibands of Finite Orientation-Preserving Partial Transformation Semigroup [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41(3): 1467-1475. doi: 10.1007/s40840-016-0406-3

    CrossRef Google Scholar

    [15] ZHAO P, HU H B. Locally Maximal Regular Subsemibands of the Finite Transformation Semigroups $\mathscr{T} $(n, r) [J]. Semigroup Forum, 2019, 98(1): 172-183. doi: 10.1007/s00233-018-9981-y

    CrossRef $\mathscr{T} $(n, r)" target="_blank">Google Scholar

    [16] 于晓丹, 孔祥智. Vague软Clifford半群[J]. 西南大学学报(自然科学版), 2020, 42(6): 46-53.

    Google Scholar

    [17] 雷倩, 何立官. 关于Conway单群和Fischer单群的刻画[J]. 西南大学学报(自然科学版), 2020, 42(10): 96-100.

    Google Scholar

    [18] 张前滔, 赵平, 罗永贵. 半群TOPn(k)的格林(星)关系及富足性[J]. 西南师范大学学报(自然科学版), 2020, 45(6): 9-15.

    Google Scholar

    [19] HOWIE J M. Fundamentals of Semigroup Theory [M]. London: Oxford Press, 1995.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1202) PDF downloads(292) Cited by(0)

Access History

Other Articles By Authors

On Classification of Maximal (Regular) Subsemigroups of Semigroup $ \mathscr{T}$n, r

    Corresponding author: ZHAO Ping

Abstract: Let $ \mathscr{J}_n$ and $ \mathscr{T}_n$ be the symmetric group and the full transformation semigroup on Xn={1, 2, …, n}, respectively. For 1≤rn, put $ \mathscr{T}$(n, r)={α∈$ \mathscr{T}_n$: |im(α)|≤r}, then the sets $ \mathscr{T}$(n, r) are the two-sided ideals of $ \mathscr{T}$n. For 1≤rn-1. In this paper, the semigroup ${\mathscr{T}_{n, r}} $=$ \mathscr{T}_n$(n, r)∪$ \mathscr{J}_n$ has been considered, and it has been proved that the ${\mathscr{T}_{n, r}} $ has exactly two classes of maximal subsemigroups: S=${\mathscr{T}_{n, r}} $\[τi](1≤ip=pr(n)) and S=$ \mathscr{T}$(n, r)∪G, where G be a maximal subgroup of the symmetric group $ \mathscr{J}_n$. In addition, this paper proved that the maximal subsemigroups and the maximal regular subsemigroups of ${\mathscr{T}_{n, r}} $ coincide. The paper extends the results.

  • $ \mathscr{J}_n$$ \mathscr{T}_n$分别是Xn={1,2,…,n}上的对称群和全变换半群. 对1≤rn,令

    $ \mathscr{T}$(nr)是全变换半群$ \mathscr{T}_n$的双边理想. 记Singn=$ \mathscr{T}_n$\$ \mathscr{J}_n$,称SingnXn上的奇异变换半群. 显然

    半群理论是群理论的自然推广,半群子结构的研究一直都是半群理论研究的热点问题之一,目前已有许多研究成果[1-18]. 特别地,文献[1]刻画了全变换半群的理想$ \mathscr{T}$(nr)的极大正则子半群;文献[2]得到了全变换半群的理想$ \mathscr{T}$(nr)的极大子半群的完全分类;文献[3]研究了保序变换半群的理想的极大正则子半群的完全分类;文献[4]得到了方向保序变换半群的理想的极大子半群的完全分类;文献[9]刻画了全变换半群的理想$ \mathscr{T}$(nr)的极大正则幂等元生成子半群的完全分类;文献[15]得到了全变换半群的理想$ \mathscr{T}$(nr)的局部极大正则幂等元生成子半群的完全分类;文献[10]考虑了半群

    刻画了$ \mathscr{T}_{{n, r}}$的生成集,并得到了半群$ \mathscr{T}_{{n, r}}$的秩. 注意到${\mathscr{T}_{n, n - 1}} $=$ \mathscr{T}_n$. 本文考虑半群$ \mathscr{T}_{{n, r}}$的极大子半群和极大正则子半群,得到了半群$ \mathscr{T}_{{n, r}}$的极大子半群和极大正则子半群的完全分类.

    U是半群S的任意子集,通常用E(U)表示U中的幂等元之集. 本文未定义的术语及记法参见文献[19].

    α$ \mathscr{T}_n$,记ker(α)={(xy)∈Xn×Xn=},则ker(α)是Xn上的等价关系,称ker(α)为α的核. 通常用im(α)表示集合{xXn},称im(α)为α的像.

    众所周知,全变换半群$ \mathscr{T}_n$中的Green关系为:对任意αβ$ \mathscr{T}_n$,有

    对1≤rn,记

    J-类J1,…,Jn恰好是$ \mathscr{T}_n$nJ-类. 显然$ \mathscr{J}_n$=Jn$ \mathscr{T}_{{n, r}}$=$ \mathscr{J}_n$$ \mathscr{T}$(nr)=$ \mathscr{J}_n$Jr∪…∪J1.

    任意取nr$ {{\mathbb{N}}_{+}}$rn,令

    称集合Pr(n)中的元素(x1x2,…,xr)为n的一个r-划分,记为pr(n)=|Pr(n)|.

    αJr,则α有如下标准形式:

    其中a1 < a2 < … < ar. 显然存在σ$ \mathscr{S}_r$($ \mathscr{S}_r$表示{1,…,r}上的对称群),使得|A1σ|≥|A2σ|≥…≥|A|≥1. 记

    称part(α)为α的划分. 显然part(α)∈Pr(n).

    Jr上引入关系~:α~β即存在λμ$ \mathscr{J}_n$,使得α=λβμ. 易验证~是Jr上的等价关系.

    引理1[10]   设αβJr,则α~β当且仅当part(α)=part(β).

    对任意αJr,记

    Γnr是~在Jr上所决定的一个分类,[β]是β所在的等价类. 由引理1易知,Jr中有pr(n)个~等价类,从而|Γnr|=pr(n). 设~在Jr上所决定的所有等价类为[τ1],[τ2],…,[τp],其中p=pr(n)(1≤rn). 显然Γnr={[τi]:1≤ip}且Jr=$ \bigcup\limits_{i=1}^{p}$[τi].

    引理2[15]   设1≤rn-1,则$ \mathscr{T}$(nr)=〈E(Jr)〉,且$ \mathscr{T}$(nr)是正则子半群.

    引理3   设1≤rn-1,S$ \mathscr{T}_{n, r}$的子半群,若$ \mathscr{J}_n$SS∩[τi]≠Ø,则对任意1≤ip=pr(n),有S=$ \mathscr{T}_{n, r}$.

       注意到Jr=$ \bigcup\limits_{i=1}^{p}$[τi]. 对任意1≤ip,取定αiS∩[τi]. 任意取βi∈[τi],则αi~βi,于是存在λμ$ \mathscr{J}_n$,使得βi=λαiμ,从而βi∈〈$ \mathscr{J}_n$αi〉⊆S. 由βi的任意性可得,Jr=$ \bigcup\limits_{i=1}^{p}$[τi]⊆S. 于是由引理2可得$ \mathscr{T}$(nr)=〈E(Jr)〉=〈Jr〉⊆S,从而由$ \mathscr{J}_n$S可得S=$ \mathscr{T}$(nr)∪$ \mathscr{J}_n$=$ \mathscr{T}_{n, r}$.

    定义1   设S是半群,MS的真子半群,若对S的任意子半群T,由MT可推出T=MT=S,则称MS的极大子半群.

    引理4   设1≤rn-1且1≤ip=pr(n),则$ \mathscr{T}_{n, r}$\[τi]是$ \mathscr{T}_{n, r}$的极大子半群.

       注意到Jr=$ \bigcup\limits_{j=1}^{p}$[τj]且$ \mathscr{T}_{n, r}$\[τi]=$ \mathscr{T}$(nr-1)∪[Jr\[τi]]∪$ \mathscr{J}_n$,显然τj$ \mathscr{T}_{n, r}$\[τi],j∈{1,…,p}\i. 任意取αβ$ \mathscr{T}_{n, r}$\[τi],若αβ∈[τi],则αβJrαβ~τi,于是存在λμ$ \mathscr{J}_n$,使得αβ=λτiμJr. 由αβαβJr可得ker(αβ)=ker(α),从而part(αβ)=part(α). 显然λτiμ~τi. 由引理1可得,part(λτiμ)=part(τi),于是part(α)=part(αβ)=part(λτiμ)=part(τi),从而由引理1可得α~τi,与α$ \mathscr{T}_{n, r}$\[τi],矛盾. 因此,$ \mathscr{T}_{n, r}$\[τi]是$ \mathscr{T}_{n, r}$的子半群.

    假设S$ \mathscr{T}_{n, r}$的子半群且[$ \mathscr{T}_{n, r}$\[τi]]⊂S,则$ \mathscr{J}_n$SS∩[τj]≠Ø,对任意1≤jp=pr(n),由引理3可得S=$ \mathscr{T}_{n, r}$. 因此,$ \mathscr{T}_{n, r}$\[τi]是$ \mathscr{T}_{n, r}$的极大子半群.

    引理5   设1≤rn-1且G是群$ \mathscr{J}_n$的极大子半群,则M=$ \mathscr{T}$(nr)∪G$ \mathscr{T}_{n, r}$的极大子半群.

      显然M$ \mathscr{T}_{n, r}$的子半群. 若M不是$ \mathscr{T}_{n, r}$的极大子半群,则存在$ \mathscr{T}_{n, r}$的子半群M*,使得MM*$ \mathscr{T}_{n, r}$. 注意到$ \mathscr{T}$(nr)⊆MM*. 令G*=M*$ \mathscr{J}_n$,则G*$ \mathscr{J}_n$的子半群且GG*$ \mathscr{J}_n$,与G的极大性矛盾. 因此,M$ \mathscr{T}_{n, r}$的极大子半群.

    本文的主要结论为:

    定理1   设1≤rn-1,则半群$ \mathscr{T}_{n, r}$的极大子半群有且仅有以下两类:

    (i) $ \mathscr{T}_{n, r}$\[τi],其中1≤ip=pr(n);

    (ii) $ \mathscr{T}$(nr)∪G,其中G是群$ \mathscr{J}_n$的极大子半群.

       令Mi=$ \mathscr{T}_{n, r}$\[τi]且N=$ \mathscr{T}$(nr)∪G,其中G是群$ \mathscr{J}_n$的极大子半群,则由引理4及引理5可知,MiN都是$ \mathscr{T}_{n, r}$的极大子半群.

    反之,设S$ \mathscr{T}_{n, r}$的极大子半群,则$ \mathscr{J}_n$SØ(否则,S$ \mathscr{T}$(nr)⊂N$ \mathscr{T}_{n, r}$,与S的极大性矛盾).

    (i) 若$ \mathscr{J}_n$S,则由引理3及S的极大性可得,存在i∈{1,2,…,p},使得S∩[τi]=Ø,于是S$ \mathscr{J}_n$∪[$ \mathscr{T}$(nr)\[δi]]=$ \mathscr{T}_{n, r}$\[τi]=Mi,从而由S的极大性可得S=Mi=$ \mathscr{T}_{n, r}$\[τi].

    (ii) 若$ \mathscr{J}_n$S$ \mathscr{J}_n$,令G=$ \mathscr{J}_n$S,则G是半群$ \mathscr{J}_n$的子半群. 假设存在$ \mathscr{J}_n$的子半群G*,使得GG*. 令S*=$ \mathscr{T}$(nr)∪G*,则S*$ \mathscr{T}_{n, r}$的子半群且SS*,于是由S的极大性可得S*=$ \mathscr{T}_{n, r}$,从而G*=$ \mathscr{J}_n$. 因此,G是群$ \mathscr{J}_n$的极大子半群. 注意到S$ \mathscr{T}$(nr)∪G=N$ \mathscr{T}_{n, r}$. 再由引理5及S的极大性可得S=N=$ \mathscr{T}$(nr)∪G.

    r=n-1时,pr(n)=1,从而Jn-1=[τ1]. 显然${\mathscr{T}_{n, n - 1}} $=$ \mathscr{T}_n$=Singn$ \mathscr{J}_n$=$ \mathscr{T}$(nn-2)∪$ \mathscr{J}_n$Jn-1. 由定理1可得以下推论:

    推论1   设n≥4,则$ \mathscr{T}_n$=${\mathscr{T}_{n, n - 1}} $的极大子半群有且仅有以下两类:

    (i) $ \mathscr{T}$(nn-2)∪$ \mathscr{J}_n$

    (ii) SingnG,其中G是群$ \mathscr{J}_n$的极大子半群.

    引理6   设1≤rn-1且1≤ip=pr(n),则$ \mathscr{T}_{n, r}$\[τi]是$ \mathscr{T}_{n, r}$的正则子半群.

       注意到$ \mathscr{T}_{n, r}$\[τi]=$ \mathscr{T}$(nr-1)∪[Jr\[τi]]∪$ \mathscr{J}_n$. 显然$ \mathscr{J}_n$是正则半群. 由引理2可知,$ \mathscr{T}$(nr-1)是正则半群. 若Jr\[τi]≠Ø,任意取αJr\[τi],则|im(α)|=r. 假设

    其中a1 < a2 < … < ar. 令

    其中aiBi且|Ai|=|Bi|(1≤ir),则显然α=αβα且part(α)=part(β),于是由引理1可得β~α,从而β$ \mathscr{T}_{n, r}$\[τi]. 由α=αβα可得,α是正则的. 再由α的任意性可得,半群$ \mathscr{T}_{n, r}$\[τi]是正则半群.

    由引理2易知半群$ \mathscr{T}_{n, r}$是正则半群. 我们可以考虑半群$ \mathscr{T}_{n, r}$的极大正则半群.

    定义2   设S是正则半群,MS的真子正则半群,若对S的任意正则子半群T,由MT可推出T=MT=S,则称MS的极大正则子半群.

    定理2   设1≤rn-1,则半群$ \mathscr{T}_{{n, r}}$的极大子半群和极大正则子半群是一致的.

       设Mi=$ \mathscr{T}_{n, r}$\[τi],1≤ip=pr(n),且N=$ \mathscr{T}$(nr)∪GG是群$ \mathscr{J}_n$的极大子半群,则由引理2及引理6可得,MiN都是$ \mathscr{T}_{n, r}$的正则子半群,从而由定理1可得,半群$ \mathscr{T}_{n, r}$的极大子半群都是正则半群. 显然半群$ \mathscr{T}_{n, r}$的极大正则子半群必包含在某一个极大子半群中. 因此,半群$ \mathscr{T}_{n, r}$的极大子半群和极大正则子半群是一致的.

    注1   由定理1、定理2可得如下结论:设n≥4,则$ \mathscr{T}_n$=${\mathscr{T}_{n, n - 1}} $的极大正则子半群S有且仅有两类:S=$ \mathscr{T}$(nn-2)∪$ \mathscr{J}_n$S=SingnG,其中G是群$ \mathscr{J}_n$的极大子半群. 此结论为文献[1]的主要定理(见文献[1]中定理1). 因此,本文所得定理1、定理2是文献[1]结果的推广.

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return