Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 6
Article Contents

LI Yu-yan, HE Dong-lin. Strongly τ-Extending Modules[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(6): 9-13. doi: 10.13718/j.cnki.xsxb.2021.06.003
Citation: LI Yu-yan, HE Dong-lin. Strongly τ-Extending Modules[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(6): 9-13. doi: 10.13718/j.cnki.xsxb.2021.06.003

Strongly τ-Extending Modules

More Information
  • Received Date: 05/05/2020
    Available Online: 20/06/2021
  • MSC: O153.3

  • Let τ=($ \mathscr{T}$,$\mathscr{F} $) be a hereditary torsion theory. The concept of strongly τ-Extending module is introduced, several properties of strongly τ-Extending module are studied, and the relations between τ-Extending module and strongly τ-Extending module are discussed, an example is given to show that τ-Extending module is not necessarily strongly τ-Extending. The closure of strong τ-Extending module under direct summand and direct sum are considered. The results show that strong τ-Extending module is closed with respect to the direct summand, but it is not closed with respect to the direct sum. Moreover, the local conditions that direct sum of strong τ-Extending module is also strong τ-Extending are given, it is proved that the direct sum of τ-torsion free strongly τ-Extending module and τ-torsion module is also strongly τ-Extending. Finally, some equivalent characterizations that M is strongly τ-Extending module are given for M=⊕iIMi(|I|≥2).
  • 加载中
  • [1] ASGARI S, HAGHANY A. t-Extending Modules and t-Baer Modules [J]. Communications in Algebra, 2011, 39(5): 1605-1623. doi: 10.1080/00927871003677519

    CrossRef Google Scholar

    [2] ASGARI S, HAGHANY A, REZAEI A R. Modules Whose t-Closed Submodules Have a Summand as a Complement [J]. Communications in Algebra, 2014, 42(12): 5299-5318. doi: 10.1080/00927872.2013.839695

    CrossRef Google Scholar

    [3] ASGARI S H. t-Quasi-Continuous Modules [J]. Communications in Algebra, 2019, 47(5): 1939-1953. doi: 10.1080/00927872.2018.1524010

    CrossRef Google Scholar

    [4] ASGARI S H. t-Continuous Modules [J]. Communications in Algebra, 2017, 45(5): 1941-1952. doi: 10.1080/00927872.2016.1226868

    CrossRef Google Scholar

    [5] ÇEKEN S, ALKAN M. On τ-Extending Modules [J]. Mediterranean Journal of Mathematics, 2012, 9(1): 129-142.

    Google Scholar

    [6] ATANI S E, KHORAMDEL M, HESARI S D P. On Strongly Extending Modules [J]. Kyungpook Mathematical Journal, 2014, 54(2): 237-247. doi: 10.5666/KMJ.2014.54.2.237

    CrossRef Google Scholar

    [7] ATANI S E, HESARI S D P, KHORAMDEL M. Strongly t-Extending Modules and Strongly t-Baer Modules [J]. International Electronic Journal of Algebra, 2016, 20(20): 86-99. doi: 10.24330/ieja.266185

    CrossRef Google Scholar

    [8] 王兴, 杨刚. Gorenstein AC-投射模的函子伴随性[J]. 西南大学学报(自然科学版), 2020, 42(10): 101-108.

    Google Scholar

    [9] 张健芳, 高增辉. Gorenstein FPn-投射模[J]. 西南师范大学学报(自然科学版), 2020, 45(8): 12-17.

    Google Scholar

    [10] 蔡晓东, 曹苗, 狄振兴. 环同态下的与半对偶模相关的Gorenstein平坦模的传递性[J]. 西南师范大学学报(自然科学版), 2020, 45(6): 16-20.

    Google Scholar

    [11] BIRKENMEIER G F, MVLLER B J, RIZVI S T. Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand [J]. Communications in Algebra, 2002, 30(3): 1395-1415. doi: 10.1080/00927870209342387

    CrossRef Google Scholar

    [12] GOMEZ PARDO J L. Spectral Gabriel Topologies and Relative Singular Functors [J]. Communications in Algebra, 1985, 13(1): 21-57. doi: 10.1080/00927878508823147

    CrossRef Google Scholar

    [13] DUNG N V, HUYNH D V, SMITH P F, et al. Extending Modules [M]. Harlow: Longman Scientifific & Technical, 1994.

    Google Scholar

    [14] ÇEKEN S, ALKAN M. Singular and Nonsingular Modules Relative to a Torsion Theory [J]. Communications in Algebra, 2017, 45(8): 3377-3389.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1676) PDF downloads(257) Cited by(0)

Access History

Other Articles By Authors

Strongly τ-Extending Modules

Abstract: Let τ=($ \mathscr{T}$,$\mathscr{F} $) be a hereditary torsion theory. The concept of strongly τ-Extending module is introduced, several properties of strongly τ-Extending module are studied, and the relations between τ-Extending module and strongly τ-Extending module are discussed, an example is given to show that τ-Extending module is not necessarily strongly τ-Extending. The closure of strong τ-Extending module under direct summand and direct sum are considered. The results show that strong τ-Extending module is closed with respect to the direct summand, but it is not closed with respect to the direct sum. Moreover, the local conditions that direct sum of strong τ-Extending module is also strong τ-Extending are given, it is proved that the direct sum of τ-torsion free strongly τ-Extending module and τ-torsion module is also strongly τ-Extending. Finally, some equivalent characterizations that M is strongly τ-Extending module are given for M=⊕iIMi(|I|≥2).

  • Extending模的概念可以追溯到20世纪30年代Neumann的工作,他对量子力学的兴趣使他发展了连续几何学,我们今天称之为上下连续完全模格. 文献[1]引入了t-本质子模的概念,利用第二奇异子模的方法研究了t-Extending模的性质. 文献[2-4]对t-Extending模进行了推广,先后研究了t-拟连续模、t-连续模等. 文献[5]从遗传挠理论的角度引入了τ-本质子模和τ-Extending模的概念,证明了:模M的每个子模都有唯一的τ-闭包. 文献[6]引入了强Extending模的概念,它是Extending模类的一个子类. 文献[7]借助强Extending模和t-Extending模的定义,引入了强t-Extending模的概念,对Extending模进行了进一步推广. 与Extending环和模相关的研究课题还得到了许多其他有意义的结论(参见文献[8-14]).

    本文从遗传挠理论的角度提出了强τ-Extending模的概念,它是τ-Extending模的推广. 文中研究了强τ-Extending模的性质,讨论了τ-Extending模与强τ-Extending模之间的关系,考虑了强τ-Extending模关于直和因子以及直和的封闭性. 对于M=⊕iIMi(|I|≥2),给出了M是强τ-Extending模的等价刻画.

    本文中的挠理论均指遗传挠理论,环都是有单位元的结合环,模指酉右R-模. 用NeMN$\vartriangleleft $M分别表示NM的本质子模,NM的全不变子模. 设NM,如果对任意AM,只要NAτ(M),都有Aτ(M),则称NMτ-本质子模,记为N$\vartriangleleft $τM,此时也称MNτ-本质扩张. 如果N没有真τ-本质扩张,则称NMτ-闭子模,记为NtcM. 设KNM,如果K是{LM|LNτ(M)}中的极大元,则称KNM中的τ-补. 如果τ-挠类$ \mathscr{T}$关于内射包封闭,则称挠理论是稳定的.

    引理1   设LM,考虑以下条件:

    (i) L$ \vartriangleleft$M

    (ii) (L+τ(M))/τ(M)≤eM/τ(M);

    (iii) L+τ(M)≤eM.

    则(i)⇔(ii)⇒(iii). 特别地,若挠理论τ是稳定的,则(i)⇔(ii)⇔(iii).

       (i)⇔(ii) 由文献[12]的性质2.2得证.

    (ii) ⇒(iii) 由文献[13]的性质1.5得证.

    τ是稳定的挠理论,则由文献[14]知,τ(M)是M的闭子模. 于是由文献[13]的性质1.10可以得到,若L+τ(M)≤eM,则(L+τ(M))/τ(M)≤eM/τ(M).

    定义1[6]   如果M的任意子模是其全不变直和因子的本质子模,则称M是强Extending模.

    下面给出强τ-Extending模的概念.

    定义2   如果M的每个τ-闭子模是M的全不变直和因子,则称M是强τ-Extending模.

    由文献[6]易知,强τ-Extending模是τ-Extending模,但下面的例子说明τ-Extending模未必是强τ-Extending模:

    例1   设F是域,$ R = \left( {\begin{array}{*{20}{c}} F&F\\ 0&F \end{array}} \right)$M是任意R-模. 则τG(M)⊕Rτ-Extending模,其中τG表示Goldie挠理论. 但由文献[7]的例3.4知,RR不是强Extending模,所以τG(M)⊕R不是强τ-Extending模.

    如果模M的任意直和因子的交仍是M的直和因子,则称M具有SSIP性质.

    性质1  若M是强τ-Extending模,则M的包含τ(M)的直和因子具有SSIP性质.

      设M是强τ-Extending模,{Mi}iI是由M的包含τ(M)的直和因子构成的模族. 则对任意iI,存在ei=ei2∈End(M),使得Mi=eiM. 若∩iIMi=0,则结论显然成立;若∩iIMi≠0,则存在eSl(End(M)),使得∩iIMi$\vartriangleleft $τeM. 由于τ(M)⊆∩iIMi,由引理1知,∩iIMieeM. 于是对任意iI,(1-ei)MeM=0,因此eiMeM. 从而∩iIMi=eM.

    性质2   设M是模. 则以下结论成立:

    (i) M是强τ-Extending模当且仅当对任意NM,存在M的全不变直和因子K,使得N$\vartriangleleft $τK

    (ii) 设M1M的直和因子. 若M是强τ-Extending模,则M1是强τ-Extending模.

       (i) 必要性  设M是强τ-Extending模,NM. 由文献[5]的性质2.5知,存在NτcM,使得N$\vartriangleleft $τN. 因为M是强τ-Extending模,所以NM的全不变直和因子.

    充分性  设LτcM,则存在M的全不变直和因子K,使得L$\vartriangleleft $τK. 因为LM中是τ-闭的,所以L=K. 从而LM的全不变直和因子.

    (ii) 设M=M1M2NτcM1. 由文献5的性质2.8知,NM2Mτ-闭子模,故NM2M的全不变直和因子. 设M=(NM2)⊕W,则

    NM1的直和因子. 设f∈End(M1),则f⊕1M2∈End(M). 于是

    因此f(N)⊆N. 从而M1是强τ-Extending模.

    由性质2,可得下面推论:

    推论1   若Mτ-挠的,则M是强τ-Extending模.

       若Mτ-挠的,则对任意NM,都有N$\vartriangleleft $τM,由性质2知,M是强τ-Extending模.

    推论2   设M是强τ-Extending模,则以下结论成立:

    (i) 若LτcM,则L是强τ-Extending模;

    (ii) τ(M)是M的全不变直和因子.

       (i) 设NτcL,则由文献[5]的定理2.13知,NτcM. 因为M是强τ-Extending模,所以NM的全不变直和因子. 设M=NH,则L=L∩(NH)=N⊕(LH),即NL的直和因子. 另一方面,由于NM的全不变直和因子,由文献[11]的引理1.1知,NL中是全不变的. 从而L是强τ-Extending模.

    (ii) 由文献[5]的引理2.3知,τ(M)是M的τ-闭子模,所以τ(M)是M的全不变直和因子.

    下面我们讨论强τ-Extending模的关于直和的封闭性. 下面的例子说明强τ-Extending模的直和不一定是强τ-Extending模:

    例2   设M=M1M2,其中M1=Zp⊕Z,M2=ZqQ(pq是整数). 由文献[7]知,(M1)Z和(M2)Z都是强τG-Extending模,其中τG表示Goldie挠理论. 但由于ZZQ中不是全不变的,故M不是强τG-Extending模.

    一个自然而然的问题是:什么情况下强τ-Extending模的直和仍是强τ-Extending模?我们给出了该问题成立的局部条件.

    定理1   设M=M1M2. 若M1τ-挠自由的强τ-Extending模,M2τ-挠模,则M是强τ-Extending模.

       设M1τ-挠自由的强τ-Extending模,M2τ-挠模,则τ(M1)=0,τ(M2)=M2. 设KτcM,由文献[5]知,KM中是τ-纯的,因此

    于是

    由文献[5]的性质2.5知,存在LM1,使得KM1$\vartriangleleft $τL. 于是由文献[5]的性质2.1知

    因为KτcM,所以(KM1)⊕M2=LM2. 因此KM1=L,即KM1M1τ-闭子模. 由于M1是强τ-Extending模,故KM1M1的全不变直和因子,因此KM的直和因子. 下证KM中是全不变的. 设f∈End(M),则$ f = \left( {\begin{array}{*{20}{c}} {{f_{11}}}&{{f_{12}}}\\ {{f_{21}}}&{{f_{22}}} \end{array}} \right)$,其中fijMjMi(ij=1,2). 由于M2τ-挠的,故对任意g∈End(M2),有

    $ f = \left( {\begin{array}{*{20}{c}} {{f_{11}}}&0\\ {{f_{21}}}&{{f_{22}}} \end{array}} \right)$. 因为

    所以

    从而KM的全不变直和因子.

    由定理1易得如下结论:

    推论3   设M=M1M2. 若M1是强τ-Extending模,M2τ-挠模,则M是强τ-Extending模.

       对M1分情况讨论.

    情形1   若M1τ-挠的,则M=M1M2τ-挠的,由推论1知,M是强τ-Extending模.

    情形2   若M1是非τ-挠的,由推论2知,存在WM1,使得M1=τ(M1)⊕W. 于是

    由性质2知,W是强τ-Extending模,且τ(W)=τ(M1/τ(M1))=0. 由定理1知,M是强τ-Extending模.

    综合上述,M是强τ-Extending模.

    最后,对于M=⊕iIMi(|I|≥2),我们给出M是强τ-Extending模的等价刻画:

    定理2   设M=⊕iIMi(|I|≥2),则以下结论等价:

    (i) M是强τ-Extending模;

    (ii) 存在ijI,使得对任意KτcM,若KMiτ(M)或KMjτ(M),则KM的全不变直和因子;

    (iii) 存在ijI,使得MjMiM中的任意τ-补是强τ-Extending模且是M的全不变直和因子.

      (i)⇒(ii) 由强τ-Extending模的定义易证.

    (ii) ⇒(iii) 设KMiM中的τ-补,则KMiτ(M). 由(ii)可以得到,KM的全不变直和因子. 下证K是强τ-Extending模. 设LτcK,则LτcM. 而LMiKMiτ(M),由(ii)可以得到,LM的全不变直和因子. 由文献[11]知,LK的全不变直和因子. 从而K是强τ-Extending模.

    (iii) ⇒(i) 设NτcM,由文献[5]的性质2.5知,存在LN,使得LNMiN中的τ-闭包. 故0=(NMi)∩Mj$\vartriangleleft $τLMj,从而LMjτ(L)⊆τ(M). 于是存在Mj在M中的τ-补E,使得LE. 由(iii)可以得到,E是强τ-Extending模且是M的全不变直和因子. 因为LτcN,所以LτcE. 因此LE的全不变直和因子,从而LM的全不变直和因子. 设存在L′≤M,使得M=LL′,则

    于是存在KN,使得KNL′在N中的τ-闭包. 类似地,可知KLτ(K)⊆τ(M),且K=KN=(KL)⊕(NL′). 下证KMiτ(M). 设mKMi,则m=a+b,其中aKLbNL′. 因此mb=aMi+(NL′). 因为KL$ {\mathscr{T}}$,所以(0∶a)∈$ {\mathscr{R}_{\rm{r}}}$(R). 又因为Mi∩(NL′)=0,于是

    因此(0∶ -b)∈ $ {\mathscr{R}_{\rm{r}}}$(R),从而Rb$ {\mathscr{T}}$. 由于LN中是τ-闭的,故LN中是τ-纯的,于是bNL′≌N/L$ {\mathscr{F}}$. 因此b=0,从而m=aτ(M). 由(iii)知,K=(KL)⊕(NL′)是强τ-Extending模且是M的全不变直和因子. 因为NL′≤τcK,所以NL′是K的全不变直和因子. 从而NL′是M的全不变直和因子. 因此N=L⊕(NL′)是M的直和因子,从而M是强τ-Extending模.

    推论4   设M=M1M2,则以下结论等价:

    (i) M是强τ-Extending模;

    (ii) 对任意KτcM,若KM1τ(M)或KM2τ(M),则KM的全不变直和因子;

    (iii) 对任意KτcM,若KM1$\vartriangleleft $τKKM2$\vartriangleleft $τK,或KM1τ(M)及KM2τ(M),则KM的全不变直和因子.

       (i)⇔(ii)和(i)⇒(iii)由定义2和定理2易证.

    (iii) ⇒(ii) 设LτcM,且满足LM2τ(M). 由文献[5]知,存在KL,使得KLM1L中的τ-闭包,易知KMτ-闭子模. 因为LM1$\vartriangleleft $τK,所以LM1=KM1$\vartriangleleft $τK,由(iii)可以得到,KM的全不变直和因子. 不妨设M=KH,则

    由文献[11]知,KN中是全不变的. 类似地,存在NL,使得NLHL中的τ-闭包,易知NMτ-闭子模. 因为

    LH$\vartriangleleft $τN,所以NKτ(N)⊆τ(M),且

    由定理2的证明过程类似可得NMiτ(M)(i=1,2). 由(iii)可以得到,NM的全不变直和因子,因此LHM的直和因子. 不妨设M=(LH)⊕P,则

    LHH的直和因子. 从而L=K⊕(LH)是M的全不变直和因子.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return