Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 9
Article Contents

JIANG Zhiyong, ZHOU Peng, CHEN Qingcui, et al. Progress on Photocatalytic Degradation of Printing and Dyeing Wastewater by Two-Dimensional Nonmetallic Materials[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(9): 50-56. doi: 10.13718/j.cnki.xsxb.2021.09.007
Citation: JIANG Zhiyong, ZHOU Peng, CHEN Qingcui, et al. Progress on Photocatalytic Degradation of Printing and Dyeing Wastewater by Two-Dimensional Nonmetallic Materials[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(9): 50-56. doi: 10.13718/j.cnki.xsxb.2021.09.007

Progress on Photocatalytic Degradation of Printing and Dyeing Wastewater by Two-Dimensional Nonmetallic Materials

More Information
  • Received Date: 21/08/2020
    Available Online: 20/09/2021
  • MSC: O643

  • Since the discovery of mechanically exfoliated graphene in 2004, two-dimensional non-metallic materials have received extensive attention due to their rich and diverse properties. This type of material, with a very high specific surface area, can be used as a photocatalyst and an electrocatalyst, provides the possibility for the development of efficient visible light-driven photocatalytic materials. In this review, the application of two-dimensional nonmetallic materials such as two-dimensional graphene, two-dimensional carbon nitride (g-C3N4), two-dimensional black phosphorus (BP) and two-dimensional boron nitride, in photocatalytic degradation of printing and dyeing wastewater, and the future research direction is prospected.
  • 加载中
  • [1] 彭稳, 钟丽萍, 刘航, 等. 有机污染物选择性光催化研究进展[J]. 水处理技术, 2017, 43(4): 1-5, 10.

    Google Scholar

    [2] 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. doi: 10.3969/j.issn.0438-1157.2013.01.011

    CrossRef Google Scholar

    [3] 杨静静, 韦莹莹, 何勇平, 等. SiC/BiVO4复合材料光催化降解亚甲基蓝[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 31-36.

    Google Scholar

    [4] CHEN C C, MA W H, ZHAO J C. Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219 doi: 10.1039/b921692h

    CrossRef Google Scholar

    [5] TADA H, KIYONAGA T, NAYA S I. Rational Design and Applications of Highly Efficient Reaction Systems Photocatalyzed by Noble Metal Nanoparticle-Loaded Titanium(Ⅳ) Dioxide[J]. Chemical Society Reviews, 2009, 38(7): 1849-1858. doi: 10.1039/b822385h

    CrossRef Google Scholar

    [6] TAN C, CAO X, WU X J, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558

    CrossRef Google Scholar

    [7] ZHANG H. Ultrathin Two-Dimensional Nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. doi: 10.1021/acsnano.5b05040

    CrossRef Google Scholar

    [8] GAN X R, LEI D Y, WONG K Y. Two-Dimensional Layered Nanomaterials for Visible-Light-Driven Photocatalytic Water Splitting[J]. Materials Today Energy, 2018, 10: 352-367 doi: 10.1016/j.mtener.2018.10.015

    CrossRef Google Scholar

    [9] SUN Z, CHANG H. Graphene and Graphene-Like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology[J]. ACS Nano, 2014, 8(5): 4133-4156. doi: 10.1021/nn500508c

    CrossRef Google Scholar

    [10] MARLINDA A R, YUSOFF N, SAGADEVAN S, et al. Recent Developments in Reduced Graphene Oxide Nanocomposites for Photoelectrochemical Water-Splitting Applications[J]. International Journal of Hydrogen Energy, 2020, 45(21): 11976-11994. doi: 10.1016/j.ijhydene.2020.02.096

    CrossRef Google Scholar

    [11] BUSTOS-RAMÍREZ K, BARRERA-DÍAZ C E, DE ICAZA-HERRERA M, et al. 4-Chlorophenol Removal from Water Using Graphite and Graphene Oxides as Photocatalysts[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 1-11. doi: 10.1186/s40201-015-0157-3

    CrossRef Google Scholar

    [12] KUMAR S, KUMAR A. ChemicallyDerived Luminescent Graphene Oxide Nanosheets and Its Sunlight Driven Photocatalytic Activity Against Methylene Blue Dye[J]. Optical Materials, 2016, 62: 320-327. doi: 10.1016/j.optmat.2016.10.014

    CrossRef Google Scholar

    [13] SUN H, LIU S, ZHOU G, et al. Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5466-5471.

    Google Scholar

    [14] ZHANG S, LI B F, WANG X X, et al. Recent Developments of Two-Dimensional Graphene-Based Composites in Visible-Light Photocatalysis for Eliminating Persistent Organic Pollutants from Wastewater[J]. Chemical Engineering Journal, 2020, 390: 124642-1-124642-24.

    Google Scholar

    [15] SUN L L, WANG G H, HAO R R, et al. Solvothermal Fabrication and Enhanced Visible Light Photocatalytic Activity of Cu2O-Reduced Graphene Oxide Composite Microspheres for Photodegradation of Rhodamine B[J]. Applied Surface Science, 2015, 358: 91-99. doi: 10.1016/j.apsusc.2015.08.128

    CrossRef Google Scholar

    [16] WEI Q, WANG Y, QIN H Y, et al. Construction of rGO Wrapping Octahedral Ag-Cu2O Heterostructure for Enhanced Visible Light Photocatalytic Activity[J]. Applied Catalysis B: Environmental, 2018, 227: 132-144. doi: 10.1016/j.apcatb.2018.01.003

    CrossRef Google Scholar

    [17] ALEKSANDRZAK M, KUKULKA W, MIJOWSKA E. GraphiticCarbon Nitride/Graphene Oxide/Reduced Graphene Oxide Nanocomposites for Photoluminescence and Photocatalysis[J]. Applied Surface Science, 2017, 398: 56-62. doi: 10.1016/j.apsusc.2016.12.023

    CrossRef Google Scholar

    [18] LIU X J, PAN L K, LV T, et al. Visible Light Photocatalytic Degradation of Dyes by Bismuth Oxide-Reduced Graphene Oxide Composites Prepared via Microwave-Assisted Method[J]. Journal of Colloid and Interface Science, 2013, 408: 145-150. doi: 10.1016/j.jcis.2013.07.045

    CrossRef Google Scholar

    [19] THOMAS A, FISCHER A, GOETTMANN F, et al. GraphiticCarbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908 doi: 10.1039/b800274f

    CrossRef Google Scholar

    [20] HUANG D L, LI Z H, ZENG G M, et al. Megamerger in Photocatalytic Field: 2D G-C3N4 Nanosheets Serve as Support of 0D Nanomaterials for Improving Photocatalytic Performance[J]. Applied Catalysis B: Environmental, 2019, 240: 153-173. doi: 10.1016/j.apcatb.2018.08.071

    CrossRef Google Scholar

    [21] YAN S C, LI Z S, ZOU Z G. PhotodegradationPerformance of G-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z

    CrossRef Google Scholar

    [22] ZHAO H X, YU H T, QUAN X, et al. Atomic Single Layer Graphitic-C3N4: Fabrication and Its High Photocatalytic Performance under Visible Light Irradiation[J]. RSC Advances, 2014, 4(2): 624-628. doi: 10.1039/C3RA45776A

    CrossRef Google Scholar

    [23] HE Y Q, MA Z Y, BINNAH L Jr. Distinctive Binary G-C3N4/MoS2 Heterojunctions with Highly Efficient Ultrasonic Catalytic Degradation for Levofloxacin and Methylene Blue[J]. Ceramics International, 2020, 46(8): 12364-12372. doi: 10.1016/j.ceramint.2020.01.287

    CrossRef Google Scholar

    [24] ZHU C Z, JIANG Z F, WEI W, et al. Fabrication of Noble-Metal-Free NiS2/g-C3N4 Hybrid Photocatalysts with Visible Light-Responsive Photocatalytic Activities[J]. Research on Chemical Intermediates, 2016, 42(8): 6483-6499. doi: 10.1007/s11164-016-2475-1

    CrossRef Google Scholar

    [25] LU N, WANG P, SU Y, et al. Construction of Z-SchemeG-C3N4/RGO/WO3 with in Situ Photoreduced Graphene Oxide as Electron Mediator for Efficient Photocatalytic Degradation of Ciprofloxacin[J]. Chemosphere, 2019, 215: 444-453. doi: 10.1016/j.chemosphere.2018.10.065

    CrossRef Google Scholar

    [26] CHEN D M, WANG K W, XIANG D G, et al. Significantly Enhancement of Photocatalytic Performances via Core-Shell Structure of ZnO@mpg-C3N4[J]. Applied Catalysis B: Environmental, 2014, 147: 554-561. doi: 10.1016/j.apcatb.2013.09.039

    CrossRef Google Scholar

    [27] JIANG Z, ZHU C, WAN W, et al. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production[J]. Journal of Materials Chemistry A, 2016, 4(5): 1806-1818. doi: 10.1039/C5TA09919F

    CrossRef Google Scholar

    [28] CHEN S F, HU Y F, MENG S G, et al. Study on the Separation Mechanisms of Photogenerated Electrons and Holes for Composite Photocatalysts G-C3N4-WO3[J]. Applied Catalysis B: Environmental, 2014, 150-151: 564-573. doi: 10.1016/j.apcatb.2013.12.053

    CrossRef Google Scholar

    [29] WANG J, XIA Y, ZHAO H Y, et al. Oxygen Defects-Mediated Z-Scheme Charge Separation in G-C3N4/ZnO Photocatalysts for Enhanced Visible-Light Degradation of 4-Chlorophenol and Hydrogen Evolution[J]. Applied Catalysis B: Environmental, 2017, 206: 406-416. doi: 10.1016/j.apcatb.2017.01.067

    CrossRef Google Scholar

    [30] HONG Y Z, JIANG Y H, LI C S, et al. In-Situ Synthesis of Direct Solid-State Z-Scheme V2O5/g-C3N4 Heterojunctions with Enhanced Visible Light Efficiency in Photocatalytic Degradation of Pollutants[J]. Applied Catalysis B: Environmental, 2016, 180: 663-673. doi: 10.1016/j.apcatb.2015.06.057

    CrossRef Google Scholar

    [31] SUDHAIK A, RAIZADA P, SHANDILYA P, et al. Review onFabrication of Graphitic Carbon Nitride Based Efficient Nanocomposites for Photodegradation of Aqueous Phase Organic Pollutants[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 28-51. doi: 10.1016/j.jiec.2018.07.007

    CrossRef Google Scholar

    [32] ZHANG H H, HAN X X, YU H J, et al. Enhanced Photocatalytic Performance of Boron and Phosphorous Co-Doped Graphitic Carbon Nitride Nanosheets for Removal of Organic Pollutants[J]. Separation and Purification Technology, 2019, 226: 128-137. doi: 10.1016/j.seppur.2019.05.066

    CrossRef Google Scholar

    [33] JIN J, LIANG Q, DING C Y, et al. Simultaneous Synthesis-Immobilization of Ag Nanoparticles Functionalized 2D G-C3N4 Nanosheets with Improved Photocatalytic Activity[J]. Journal of Alloys and Compounds, 2017, 691: 763-771. doi: 10.1016/j.jallcom.2016.08.302

    CrossRef Google Scholar

    [34] LI L K, YU Y J, YE G J, et al. Black Phosphorus Field-Effect Transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35

    CrossRef Google Scholar

    [35] RAHMAN M Z, KWONG C W, DAVEY K, et al. 2DPhosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications[J]. Energy & Environmental Science, 2016, 9(3): 709-728.

    Google Scholar

    [36] WANG H, YANG X, SHAO W, et al. Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation[J]. Journal of the American Chemical Society, 2015, 137(35): 11376-11382. doi: 10.1021/jacs.5b06025

    CrossRef Google Scholar

    [37] WANG H, ZHANG X D, XIE Y. Photocatalysis in Two-Dimensional Black Phosphorus: The Roles of Many-Body Effects[J]. ACS Nano, 2018, 12(10): 9648-9653. doi: 10.1021/acsnano.8b06723

    CrossRef Google Scholar

    [38] CASTELLANOS-GOMEZ A. Black Phosphorus: Narrow Gap, Wide Applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291. doi: 10.1021/acs.jpclett.5b01686

    CrossRef Google Scholar

    [39] WANG X, ZHOU B Q, ZHANG Y M, et al. In-Situ Reduction and Deposition of Ag Nanoparticles on Black Phosphorus Nanosheets Co-Loaded with Graphene Oxide as a Broad Spectrum Photocatalyst for Enhanced Photocatalytic Performance[J]. Journal of Alloys and Compounds, 2018, 769: 316-324 doi: 10.1016/j.jallcom.2018.08.008

    CrossRef Google Scholar

    [40] YOU H, JIA Y, WU Z, et al. Room-Temperature Pyro-Catalytic Hydrogen Generation of 2D Few-Layer Black Phosphorene under Cold-Hot Alternation[J]. Nature Communications, 2018, 9(1): 2889-1-2889-8.

    Google Scholar

    [41] LEE H U, LEE S C, WON J, et al. StableSemiconductor Black Phosphorus (BP)@titanium Dioxide (TiO2) Hybrid Photocatalysts[J]. Scientific Reports, 2015, 5: 08691-1-08691-6.

    Google Scholar

    [42] LI S T, WANG P F, WANG R D, et al. One-Step Co-Precipitation Method to Construct Black Phosphorus Nanosheets/ZnO Nanohybrid for Enhanced Visible Light Photocatalytic Activity[J]. Applied Surface Science, 2019, 497: 143682-1-143682-10.

    Google Scholar

    [43] CHEN P, GUO Z, CUI K P, et al. Photo-Induced Degradation of Norfloxacin by Nanosilver Modified Two-Dimensional Black Phosphorus[J]. Solid State Sciences, 2020, 103: 106188-1-106188-8.

    Google Scholar

    [44] ZHU M S, OSAKADA Y, KIM S, et al. Black Phosphorus: a Promising Two Dimensional Visible and Near-Infrared-Activated Photocatalyst for Hydrogen Evolution[J]. Applied Catalysis B: Environmental, 2017, 217: 285-292. doi: 10.1016/j.apcatb.2017.06.002

    CrossRef Google Scholar

    [45] YU S J, WANG X X, PANG H W, et al. Boron Nitride-Based Materials for the Removal of Pollutants from Aqueous Solutions: a Review[J]. Chemical Engineering Journal, 2018, 333: 343-360. doi: 10.1016/j.cej.2017.09.163

    CrossRef Google Scholar

    [46] ZHOU C Y, LAI C, ZHANG C, et al. Semiconductor/Boron Nitride Composites: Synthesis, Properties, and Photocatalysis Applications[J]. Applied Catalysis B: Environmental, 2018, 238: 6-18. doi: 10.1016/j.apcatb.2018.07.011

    CrossRef Google Scholar

    [47] FENG C Y, TANG L, DENG Y C, et al. Enhancing Optical Absorption and Charge Transfer: Synthesis of S-Doped H-BN with Tunable Band Structures for Metal-Free Visible-Light-Driven Photocatalysis[J]. Applied Catalysis B: Environmental, 2019, 256: 117827-1-117827-9.

    Google Scholar

    [48] SHAHABUDDIN S, KHANAM R, KHALID M, et al. Synthesis of 2DBoron Nitride Doped Polyaniline Hybrid Nanocomposites for Photocatalytic Degradation of Carcinogenic Dyes from Aqueous Solution[J]. Arabian Journal of Chemistry, 2018, 11(6): 1000-1016. doi: 10.1016/j.arabjc.2018.05.004

    CrossRef Google Scholar

    [49] SINGH B, KAUR G, SINGH P, et al. Nanostructured BN-TiO2 Composite with Ultra-High Photocatalytic Activity[J]. New Journal of Chemistry, 2017, 41(20): 11640-11646. doi: 10.1039/C7NJ02509B

    CrossRef Google Scholar

    [50] FU X L, HU Y F, ZHANG T, et al. The Role of Ball Milled H-BN in the Enhanced Photocatalytic Activity: a Study Based on the Model of ZnO[J]. Applied Surface Science, 2013, 280: 828-835. doi: 10.1016/j.apsusc.2013.05.069

    CrossRef Google Scholar

    [51] YANG Y L, WU M G, ZHU X W, et al. 2020 Roadmap on Two-Dimensional Nanomaterials for Environmental Catalysis[J]. Chinese Chemical Letters, 2019, 30(12): 2065-2088. doi: 10.1016/j.cclet.2019.11.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(860) PDF downloads(102) Cited by(0)

Access History

Progress on Photocatalytic Degradation of Printing and Dyeing Wastewater by Two-Dimensional Nonmetallic Materials

Abstract: Since the discovery of mechanically exfoliated graphene in 2004, two-dimensional non-metallic materials have received extensive attention due to their rich and diverse properties. This type of material, with a very high specific surface area, can be used as a photocatalyst and an electrocatalyst, provides the possibility for the development of efficient visible light-driven photocatalytic materials. In this review, the application of two-dimensional nonmetallic materials such as two-dimensional graphene, two-dimensional carbon nitride (g-C3N4), two-dimensional black phosphorus (BP) and two-dimensional boron nitride, in photocatalytic degradation of printing and dyeing wastewater, and the future research direction is prospected.

  • 近年来, 随着纺织工业和印刷工业的发展, 染料工业和染料技术也得到前所未有的发展. 染料在丰富人们的物质和文化生活的同时, 也带来了显性和隐性的水污染问题, 严重威胁生态环境安全和人类健康. 印染废水中的主要成分有染料、浆料、酸碱和无机盐等, 其主要污染物为有机染料. 因此, 开发经济有效的印染废水处理技术已成为当今环保行业重要的课题[1]. 印染废水的传统处理方法有物理法、化学法和生物降解法等. 物理法包括吸附法、自然沉淀法和过滤法等, 物理法只是进行简单的相转移, 并没有实现真正的降解;化学法虽能降解有机污染物, 但降解效果较差, 达不到标准水平且化学试剂的使用对环境又带来新的污染;生物法是利用厌氧细菌将有机污染物分解为二氧化碳和水, 但生物处理方法耗时较长[2]. 作为一种新型的环境友好技术, 光催化降解广泛应用于染料、酚类、芳香烃和卤代烃等生物难降解物质的处理, 为印染废水处理提供了新的机遇[3-4]. 在众多光催化剂中, 二维光催化材料具有高比表面积、丰富的表面活性位点和多孔结构、有利于负载其他材料等特点, 受到人们的广泛关注[5-6]. 近年来, 基于石墨烯、氮化碳、金属硫化物和氧化物等二维光催化材料被大量研发, 并应用于光催化降解印染废水[7-8]. 为此, 本研究将以二维石墨烯、二维石墨相氮化碳、二维黑磷和二维氮化硼材料为重点, 介绍二维非金属材料家族的热点材料(图 1)在光催化降解印染废水中的研究进展, 并展望未来的发展趋势.

1.   二维石墨烯材料
  • 作为一种典型的二维非金属材料, 石墨烯由单层碳原子以sp2杂化组成六边形晶格, 具有优良的强度、稳定性、良好的吸附能力和优异的电子迁移率等特点[9]. 但是, 石墨烯是零禁带宽度材料, 具有半金属性质, 不适合作光催化材料, 改性后的石墨烯类似物, 如氧化石墨烯(GO)和氧化还原石墨烯(rGO)成为优良的二维非金属光催化材料[10]. Bustos等[11]用二维GO光催化降解4-氯苯酚, 获得4-氯苯酚的降解率为92%, 总有机碳去除率为97%;二维GO还能降解中间产物, 在处理酚类废水中具有潜在的应用价值. Kumar等[12]采用化学方法合成不同含氧官能团的二维GO, 在太阳光照射下, 材料对亚甲基蓝溶液的降解率为60%. Sun等[13]用Hummers法制得GO, 再用化学还原法制得氧化还原石墨烯(rGO), 考察了rGO对亚甲基蓝和2, 4-二氯苯酚的光催化降解效率. 在可见光照射下, rGO降解亚甲基蓝10 min, 获得的降解率为84.8%;降解2, 4-二氯苯酚180 min, 获得的降解率为70.4%.

    二维GO和rGO为石墨烯衍生物, 含有羰基、羟基和羧基等多种含氧官能团, 使它们成为有效的光催化剂载体[14]. 目前, 二维GO或rGO与金属氧化物[15]、贵金属[16]、氮化碳(g-C3N4)[17]等材料复合, 已成功制备出二维GO或rGO复合光催化材料. Liu等[18]采用微波辅助合成Bi2O3-GO复合材料, 加入2%的复合材料, 可见光照射240 min, 获得甲基橙和甲基蓝的降解率分别为93%和96%, 而用Bi2O3的降解率分别为78%和76%;降解机理研究表明, 加入二维GO增加了对光的吸收, 降低了电子-空穴负荷率, 进而提高了光催化降解活性. Sun等[15]以Cu(NO3)2和谷氨酸分别为Cu的前驱体和还原剂, 用溶剂热处理法制备Cu2O-rGO复合材料, 加入0.05%的复合材料光催化降解罗丹明B的效果最好, 分别是Cu2O和TiO2的2.9倍和7.9倍.

    二维GO或rGO及其复合材料在光催化、电催化氧化和电催化还原等方面都表现出良好的性能. 但是, 这些材料存在难以工业化生产、重复利用性差和引起二次污染等问题, 因此合理设计二维GO或rGO复合光催化材料成为未来研究的重点方向.

2.   二维石墨相氮化碳材料
  • 石墨相氮化碳(g-C3N4)是一种类石墨烯结构的二维非金属材料, 具有与石墨烯类似的层状结构. 剥离得到的二维g-C3N4保留了C3N4的芳香杂环结构, 使其具有比块状g-C3N4更多的优点, 如比表面积大、表面活性位点较多、电子-空穴复合率较低等[19-20]. Yan等[21]采用直接加热法制备二维g-C3N4, 可见光照射5 h, 500 ℃煅烧得到的二维g-C3N4对甲基橙的降解率为89%. Zhao等[22]利用超声辅助法制备二维g-C3N4纳米片, 光催化降解罗丹明B的速率是块状g-C3N4的10.2倍;材料重复使用10次, 光催化活性无明显损失;g-C3N4的二维结构延长了光生电荷的寿命, 增加了活性位点, 进而提高了光催化活性.

    二维g-C3N4除具有纳米结构外, 特殊的光电行为使其能与多种半导体材料形成异质结. 近年来, 研究者将过渡金属硫化物(如MoS2[23]和NiS[24]等)、类石墨烯材料(如石墨烯[25]和GO[17]等)、过渡金属氧化物(如ZnO[26]、TiO2[27]和WO3[28]等)与二维g-C3N4异质结复合, 并应用于有机物的光催化降解, 取得了满意的处理效果. Wang等[29]用浸渍法制备ZnO/g-C3N4复合材料, 加入10%的复合材料降解4-氯苯酚, 可见光照射60 min时的降解率为95%. Hong等[30]用原位生长法制备V2O5/g-C3N4复合材料, 并用于罗丹明B、甲基橙和亚甲基蓝的光催化降解. 研究发现, 加入1.0%的复合材料降解罗丹明B, 可见光照射60 min时的降解率为95.5%;降解甲基橙和亚甲基蓝也取得了较好的效果.

    g-C3N4的特殊二维结构使其不仅可与半导体材料复合, 还可以在g-C3N4中掺杂金属(如Fe, Cu和Ni等)或非金属元素(如N, P和S等). 掺杂金属或非金属元素, 可以延缓光生电子和空穴的复合, 实现光生载流子的高效分离, 提高光催化性能[31]. Zhang等[32]将B和P掺杂至g-C3N4骨架中, 制得B, P共掺杂的g-C3N4纳米片(BPCNNS), 可见光照射60 min, BPCNNS可催化罗丹明B完全降解, 降解速率是块状g-C3N4的5.9倍;BPCNNS重复使用5次, 光催化活性未明显降低. Jin等[33]制备了Ag掺杂的二维g-C3N4, 比二维g-C3N4的光催化活性明显提高;可见光照射50 min, 2%的Ag/g-C3N4对罗丹明B的降解率达到98%.

    二维g-C3N4由块状g-C3N4通过化学氧化、液相剥离、超声处理等方法剥离得到. 这些方法产量低、重现性差、耗时长, 限制了二维g-C3N4的工业化应用. 二维g-C3N4的光催化改性过程中, 掺杂Pt, Ag, Au等贵金属, 可降低电子和空穴的复合率, 进而提高光催化活性. 但是, 贵金属的成本高、资源稀缺和降解过程中的二次污染, 仍是目前急需解决的问题. 因此, 未来二维g-C3N4的主要研究方向为: ①探索二维g-C3N4的快速、高效合成方法, 进而调控其能带结构;②与其他半导体材料复合形成多元光催化体系;③通过掺杂和形貌调控等方法提高光催化性能.

3.   二维黑磷材料
  • 2014年, Li等[34]首次制备出二维黑磷(BP), 并提出二维BP可用于光催化分解水制氢, 引起了学术界的广泛关注. 二维BP具有褶皱片层结构、直接带隙、平面各向异性、热力学稳定和空穴迁移率较高等优点[35], 使其在催化、光电、传感器等领域具有广阔的应用前景. 二维BP的带隙大小可以通过调控层数来调节, 块状BP和单层BP的带隙分别为0.3 eV和2.0 eV, 使BP能够吸收从可见光到中红外光波长范围的光线[36], 成为近年来光催化领域的研究热点. Wang等[36]用液相剥离制备超薄二维BP, 并用于二苯基苯并呋喃的光催化降解研究, 发现二维BP的光催化活性远高于块状BP, 可见光照射20 min, 用二维BP获得甲基橙的降解率为90%.

    尽管二维BP的载流子迁移率高、比表面积大、活性位点丰富, 但它在自然环境中容易降解, 限制了它在工业领域的应用[37]. 异质结复合光催化将两种半导体材料结合起来, 其结构能弥补宽禁带半导体的不足, 并加速电子转移、抑制光生电子的复合, 提高对太阳光的利用率, 增加催化活性, 因此受到人们的重视[38]. 近年来, 二维BP与多种材料复合, 如二维材料(GO[39], g-C3N4[40]等)、金属氧化物(如TiO2[41], ZnO[42]等)、金属(如Ag[43], Pt[44]等)等, 制备了一系列二维BP复合材料, 并考察了它们对有机物的光催化降解性能. Lee等[41]采用超声辅助液相剥离法, 剥离块状BP制得二维BP, 再与TiO2复合得到二维BP/TiO2材料, 可见光照射70 min, 罗丹明B的降解率大于92%;材料重复使用15次, 光催化活性未明显下降. 此外, 二维BP/TiO2对大肠杆菌和金黄色葡萄球菌表现出良好的抗菌活性.

    Li等[42]用一步共沉淀法合成二维BP/ZnO(BPNs-ZnO), 可见光照射60 min, 材料催化甲基蓝的降解率为96%, 远高于ZnO的55%、块状BP的9%和二维BP的19%. BPNs-ZnO复合材料光催化活性提高的主要原因: ①提高了对可见光的吸收率;②相对较大的比表面积为光催化降解提供了更多的活性位点;③复合材料的带隙结构有助于光生电荷的运输与分离.

    与其他二维材料一样, 可通过液相剥离、机械剥离等方式制备二维BP. 目前, 二维BP的制备工艺尚不成熟, 难以实现高效、高质量制备缺陷少的二维BP, 阻碍了二维BP的研究与应用. 与其他二维材料不同, 二维BP具有面内各向异性, 使其物理性质在不同方向存在显著差异. 在氧气、水和光的联合作用下, 二维BP易发生降解, 研发方便快捷的防降解手段将是人们关注的热点.

4.   二维氮化硼材料
  • 二维氮化硼(h-BN)具有类石墨烯的层状结构, 每一层都是由N原子和B原子交替排列组成的六角环状网络, 层间靠范德华力紧密结合在一起, 呈白色, 又称“白石墨烯”. h-BN具有高机械性能、高耐热性、高导热性和耐腐蚀等特点, 使其在物理、化学、催化和环境等领域具有巨大潜在应用价值[45].

    h-BN剥离得到的二维h-BN, 除具有h-BN的优异性能外, 还具有如下优点: ①导热率高于块状h-BN;②在1 100 ℃下具有良好的化学惰性;③在210~220 nm的深紫外区有很强的吸收峰;④具有超高的载流子迁移率(~60 000 cm2/(V·s));④可与其他材料形成范德华异质结, 提高其光电性能[46]. 目前, 二维h-BN在光催化降解印染废水中的应用, 主要通过掺杂、氢原子修饰和异质结复合等调控方式来实现.

    Feng等[47]采用简单的热处理, 制备出S掺杂的二维h-BN(S-BN), 可见光照射60 min后, 光催化2, 4-二氯苯酚的降解率为77%, 总有机碳(TOC)去除率为73%, 远高于二维h-BN. 二维h-BN掺杂S原子可以增强对可见光的吸收, 提高电荷转移, 进而提高光催化降解活性. Shahabuddin等[48]采用超声辅助法, 将二维h-BN掺杂于聚苯胺纳米管(PANI), 合成PANI-h-BN复合材料;加入2%的复合材料, 可见光照射90 min, 甲基蓝和甲基橙的降解率分别为93%和95%;重复使用5次, 复合材料仍具有较高的光催化活性.

    Singh等[49]采用冰浴法, 制备了一种高比表面积(103.66 m2/g)、窄带隙(2.91 eV)的二维h-BN-TiO2复合材料, 可见光照射200 min, 复合材料对亚甲基蓝的降解率为79%, 远高于用TiO2的降解率(32%). Fu等[50]采用研磨法, 制备二维h-BN-ZnO复合材料, 加入1%的复合材料, 可见光照射20 min, 获得罗丹明B和亚甲基蓝的降解率分别为82%和60%, 而ZnO对它们的降解率分别为33%和30%. 二维h-BN构建的范德华异质结, 可以显著解决可见光利用率低、光生电子空穴易复合等问题, 为光催化降解印染废水的研究奠定了基础.

    二维h-BN具有高比表面积、超疏水性、较强的吸附能力等优点, 成为光催化降解印染废水领域的研究热点. 在实际应用中, 二维h-BN存在如下问题: ①制备高产率的单层或少数层的二维h-BN具有一定挑战性;②二维h-BN通过范德华异质结, 形成复合材料, 可解决二维h-BN的宽带隙问题. 目前, 基于二维h-BN构建的范德华异质结在光催化降解印染废水的研究较少, 如何选择性氧化印染废水和控制目标产物, 还需要进一步探索;③二维h-BN光催化降解印染废水的机制尚未明确.

5.   结论
  • 二维非金属材料的报道逐渐增多. 二维非金属材料凭借自身独特的物理化学性质, 引起人们的广泛关注[51]. 尽管二维非金属材料的光催化性能研究取得了一些进展, 但二维非金属材料的生产还未实现工业化.

    首先, 二维材料的合成方法有待进一步改善, 需要调控材料的厚度、掺杂和缺陷结构与电子结构之间的构效关系, 提高材料的光催化活性. 发展简单高效的合成技术是二维非金属材料领域的一个重要研究方向;其次, 为进一步利用二维非金属材料, 开发改进材料功能的有效方法, 如构建异质结、敏化和负载等, 将是今后研究的热点. 最后, 在提高光催化活性的同时, 保证二维非金属材料的稳定性仍是光催化降解领域的主要研究方向. 二维非金属材料的应用仍有许多亟待解决的问题, 值得进一步探索.

Figure (1)  Reference (51)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return