Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 48 Issue 1
Article Contents

HUANG Ting, YAN Ying, SHANG Yanying. Existence of Ground State Sign-changing Solutions for a Class of Generalized Kirchhoff Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(1): 18-25. doi: 10.13718/j.cnki.xsxb.2023.01.003
Citation: HUANG Ting, YAN Ying, SHANG Yanying. Existence of Ground State Sign-changing Solutions for a Class of Generalized Kirchhoff Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(1): 18-25. doi: 10.13718/j.cnki.xsxb.2023.01.003

Existence of Ground State Sign-changing Solutions for a Class of Generalized Kirchhoff Equations

More Information
  • Corresponding author: SHANG Yanying
  • Received Date: 27/05/2022
    Available Online: 20/01/2023
  • MSC: O176.3

  • Study a class of generalized Kirchhoff equations $ -\left(a+b \int_{\mathbb{R}^3}|\nabla u|^2 \mathrm{~d} x\right) \triangle u+V(x) u=g(u) $ where \lt i \gt a \lt /i \gt , \lt i \gt b \lt /i \gt \gt 0 are constants. Since there are nonlocal terms \lt inline-formula \gt $ b\left(\int_{\mathbb{R}^3}|\nabla u|^2 \mathrm{~d} x\right) \triangle u$ \lt /inline-formula \gt in the equation, the variational generalization of the equation has different properties from the case \lt i \gt b \lt /i \gt =0. In contrast to the related literature, \lt i \gt g \lt /i \gt does not need to satisfy the monotonicity condition and the nonlinear term \lt i \gt g \lt /i \gt contains \lt i \gt g \lt /i \gt ( \lt i \gt t \lt /i \gt )=| \lt i \gt t \lt /i \gt | \lt sup \gt \lt i \gt p \lt /i \gt -2 \lt /sup \gt \lt i \gt t \lt /i \gt (2 \lt \lt i \gt p \lt /i \gt ≤4) this case, \lt i \gt V \lt /i \gt also does not need to satisfy the mandatory condition. Firstly, an auxiliary operator is introduced to construct a pseudo-gradient vector field to prove the existence of a descending flow invariant set. Second, since the 4-hyperlinear AR condition does not hold, it is necessary to introduce a nonlocal perturbation method by adding a higher-order term \lt i \gt β \lt /i \gt | \lt i \gt u \lt /i \gt | \lt sup \gt \lt i \gt r \lt /i \gt -2 \lt /sup \gt \lt i \gt u \lt /i \gt and another nonlocal perturbation. For the perturbed problem, the variational solution of the perturbed problem is obtained by the improved AR condition and the extremely minimal parameter under the descending flow invariant set, which in turn leads to the variational solution of the original problem. Finally, it is proved that the variational solution is the base-state variational solution of the original problem.
  • 加载中
  • [1] 唐榆婷, 唐春雷. 一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性[J]. 西南大学学报(自然科学版), 2017, 39(6): 81-86.

    Google Scholar

    [2] HE X M, ZOU W M. Existence and Concentration Behavior of Positive Solutions for a Kirchhoff Equation in $ \mathbb{R}$3[J]. Journal of Differential Equations, 2012, 252(2): 1813-1834. doi: 10.1016/j.jde.2011.08.035

    CrossRef $ \mathbb{R}$3" target="_blank">Google Scholar

    [3] LI G B, YE H Y. Existence of Positive Ground State Solutions for the Nonlinear Kirchhoff Type Equations in $ \mathbb{R}$3[J]. Journal of Differential Equations, 2014, 257(2): 566-600. doi: 10.1016/j.jde.2014.04.011

    CrossRef $ \mathbb{R}$3" target="_blank">Google Scholar

    [4] CHEN C Y, KUO Y C, WU T F. The Nehari Manifold for a Kirchhoff Type Problem Involving Sign-Changing Weight Functions[J]. Journal of Differential Equations, 2011, 250(4): 1876-1908. doi: 10.1016/j.jde.2010.11.017

    CrossRef Google Scholar

    [5] 赵荣胜, 唐春雷. 一类Kirchhoff型方程解的多重性[J]. 西南大学学报(自然科学版), 2015, 37(2): 60-63.

    Google Scholar

    [6] 苑紫冰, 欧增奇. 一类具有Hardy-Sobolev临界指数的Kirchhoff方程的多解性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 32-36.

    Google Scholar

    [7] 陈星, 吴行平, 唐春雷. 一类渐近3-线性Kirchhoff型方程的正基态解[J]. 西南师范大学学报(自然科学版), 2019, 44(4): 22-25.

    Google Scholar

    [8] 刘选状, 吴行平, 唐春雷. 一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 54-59.

    Google Scholar

    [9] ZHANG Z T, PERERA K. Sign Changing Solutions of Kirchhof Type Problems Via Invariant Sets of Descent Flow[J]. Journal of Mathematical Analysis and Applications, 2006, 317(2): 456-463.

    Google Scholar

    [10] 彭秋颖, 吕颖. 带有临界指数的Kirchhoff方程最小能量变号解的存在性[J]. 西南师范大学学报(自然科学版), 2019, 44(10): 23-29.

    Google Scholar

    [11] DENG Y B, PENG S J, SHUAI W. Existence and Asymptotic Behavior of Nodal Solutions for the Kirchhoff-Type Problems in $ \mathbb{R}$3 [J]. Journal of Functional Analysis, 2015, 269(11): 3500-3527.

    $ \mathbb{R}$3" target="_blank">Google Scholar

    [12] SUN J J, LI L, CENCEIJ M, et al. Infinitely Many Sign-Changing Solutions for Kirchhoff Type Problems in $ \mathbb{R}$3 [J]. Nonlinear Analysis, 2019, 186: 33-54.

    $ \mathbb{R}$3" target="_blank">Google Scholar

    [13] LIU Z S, LOU Y J, ZHANG J J. A Perturbation Approach to Studying Sign-changing Solutions of Kirchhoff Equations with a General Nonlinearity[J]. Annali di Matematica Pura ed Applicata, 2022, 201(3): 1229-1255.

    Google Scholar

    [14] CASSANI D, LIU Z S, TARSI C, et al. Multiplicity of Sign-changing Solutions for Kirchhoff-type Equations[J]. Nonlinear Analysis, 2019, 186: 145-161.

    Google Scholar

    [15] LIU Z L, WANG Z Q, ZHANG J J. Infinitely Many Sign-Changing Solutions for the Nonlinear Schrödinger-Poisson System[J]. Annali di Matematica Pura ed Applicata, 2016, 195(3): 775-794.

    Google Scholar

    [16] LIU J Q, LIU X Q, WANG Z Q. Multiple Mixed States of Nodal Solutions for Nonlinear Schrödinger Systems[J]. Calculus of Variations and Partial Differential Equations, 2015, 52(3/4): 565-586.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1199) PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Existence of Ground State Sign-changing Solutions for a Class of Generalized Kirchhoff Equations

    Corresponding author: SHANG Yanying

Abstract: Study a class of generalized Kirchhoff equations $ -\left(a+b \int_{\mathbb{R}^3}|\nabla u|^2 \mathrm{~d} x\right) \triangle u+V(x) u=g(u) $ where \lt i \gt a \lt /i \gt , \lt i \gt b \lt /i \gt \gt 0 are constants. Since there are nonlocal terms \lt inline-formula \gt $ b\left(\int_{\mathbb{R}^3}|\nabla u|^2 \mathrm{~d} x\right) \triangle u$ \lt /inline-formula \gt in the equation, the variational generalization of the equation has different properties from the case \lt i \gt b \lt /i \gt =0. In contrast to the related literature, \lt i \gt g \lt /i \gt does not need to satisfy the monotonicity condition and the nonlinear term \lt i \gt g \lt /i \gt contains \lt i \gt g \lt /i \gt ( \lt i \gt t \lt /i \gt )=| \lt i \gt t \lt /i \gt | \lt sup \gt \lt i \gt p \lt /i \gt -2 \lt /sup \gt \lt i \gt t \lt /i \gt (2 \lt \lt i \gt p \lt /i \gt ≤4) this case, \lt i \gt V \lt /i \gt also does not need to satisfy the mandatory condition. Firstly, an auxiliary operator is introduced to construct a pseudo-gradient vector field to prove the existence of a descending flow invariant set. Second, since the 4-hyperlinear AR condition does not hold, it is necessary to introduce a nonlocal perturbation method by adding a higher-order term \lt i \gt β \lt /i \gt | \lt i \gt u \lt /i \gt | \lt sup \gt \lt i \gt r \lt /i \gt -2 \lt /sup \gt \lt i \gt u \lt /i \gt and another nonlocal perturbation. For the perturbed problem, the variational solution of the perturbed problem is obtained by the improved AR condition and the extremely minimal parameter under the descending flow invariant set, which in turn leads to the variational solution of the original problem. Finally, it is proved that the variational solution is the base-state variational solution of the original problem.

  • 本文研究Kirchhoff方程

    其中VC($\mathbb{R}$3$\mathbb{R}$),gC($\mathbb{R}$$\mathbb{R}$),ab是正常数.

    由于非局部项$\int_{\mathbb{R}^3}|\nabla u|^2 \mathrm{~d} x$的存在,Kirchhoff问题被视为非局部问题. 关于这类方程的正解、多解和基态解的研究可参见文献[1-8]. 近年来,Kirchhoff方程的变号解受到广泛关注. 文献[9]在g(xt)满足次临界条件的情形下,利用极大极小方法和下降流不变集得到了Kirchhoff方程的变号解. 文献[10]利用Nehari流形和变分法得到了带临界指数的Kirchhoff方程的基态变号解. 文献[11]在g(|x|,t) 满足4-超线性增长条件的情况下,得到了方程(1)仅变号k次的径向解. 文献[12]利用不变集和Ljusternik-Schnirelman型极大极小方法,得到了方程(1)的无穷多个变号解. 文献[13]在如下AR条件(G)成立时,得到了方程(1)的基态变号解:

    (G) 存在μ>2,使得tg(t)≥μG(t)>0对于所有t≠0成立,其中$G(t)=\int_0^t g(s) \mathrm{d} s$.

    我们把条件(G)减弱为以下条件:

    (g1) 存在μ>2,使得tg(t)-μG(t)≥-υt2对于所有t≠0成立,其中υ>0充分小.

    在本文中,假设VC($\mathbb{R}$3$\mathbb{R}$)和gC($\mathbb{R}$$\mathbb{R}$)分别满足如下条件:

    (V1) $\inf\limits _{x \in \mathbb{R}^3} V(x)=V_0>0$

    (V2) V(x)∈C($\mathbb{R}$3$\mathbb{R}$)是径向对称且可微的,$(\nabla V(x), x) \in L^{\infty}\left(\mathbb{R}^3\right) \cup L^{\frac{3}{2}}\left(\mathbb{R}^3\right)$. 此外,存在μ>2,使得

    (g2) gC($\mathbb{R}$$\mathbb{R}$)并且$\lim\limits _{t \rightarrow 0} \frac{g(t)}{t}=0$

    (g3) $\lim\limits _{|t| \rightarrow \infty} \sup \frac{|g(t)|}{|t|^{p-1}}<\infty$p∈(2,6).

    显然,条件(g1)比(G)弱. 本文利用文献[13]的思想,在上述条件(V1)-(V2)和(g1)-(g3)下,仍然得到了方程(1)的基态变号解.

    记Hilbert空间

    其内积定义为

    其范数为

    方程(1)对应的能量泛函为

    方程的解与泛函的临界点一一对应. 本文用CCi表示各种正常数. 记S为最佳Sobolev常数:

    本文的主要结果如下:

    定理1  假设条件(V1)-(V2)和(g1)-(g3)成立,则方程(1)至少有一个径向对称的基态变号解.

    由于4-超线性Ambrosetti-Rabinowtiz条件不成立,导致PS序列的有界性难以得到,所以需要引入一个扰动问题来克服这种困难. 设$\alpha \in\left(0, \frac{\mu-2}{3 \mu+2}\right)$,固定λβ∈(0,1],$r \in\left(\max \left\{p, \frac{9}{2}\right\}, 6\right)$. 考虑如下扰动问题:

    其中

    与之有关的能量泛函为

    引理1  设uJλβE中的临界点,(λβ)∈(0,1]×(0,1],则

    作为Lax-Milgram定理的应用,对于每一个uE,方程

    都有唯一的弱解vE. 为了构造Jλβ的下降流,引入一个辅助算子

    其中v=Tλβ(u)是方程(5)唯一的弱解. 由文献[13]可知,算子Tλβ具有以下性质:

    (ⅰ) Tλβ是连续且紧的;

    (ⅱ) ∀uEJλβ(u-Tλβ(u))≥‖u-Tλβ(u)‖2

    (ⅲ) ∀uE,‖Jλβ(u)‖2≤‖u-Tλβ(u)‖(1+C1u2+C2u2α);

    (ⅳ) (λβ) ∈(0,1]×(0,1],c < dτ>0,若Jλβ(u)∈[cd],‖Jλβ(u)‖≥τ,则存在δ>0,使得‖u-Tλβ(u)‖≥δ.

    为了得到变号解,令

    对于任意的ε>0,设

    容易验证WE中开的对称子集,并且E\W只包含变号解. 记

    与文献[14]中引理2.4的证明类似,可以得到当ε∈(0,ε0)时,方程(3)的所有变号解都包含在E\W中.

    引理2[15](形变引理)  设SEc$\mathbb{R}$εδ>0,满足

    其中

    则对于0 < ε < ε1 < ε0,存在映射ηC([0, 1]×EE),使得:

    (ⅰ) η(tu)=u,当t=0或者uJλβ-1([c-2ε1c+2ε1])时成立;

    (ⅱ) η(1,Jλβc+εS)⊂Jλβc-ε

    (ⅲ) ∀uEJλβ(η(·,u))是非增的;

    (ⅳ) $\forall t \in[0, 1], \eta\left(t, \widetilde{P}_{\varepsilon}^{+}\right) \subset \widetilde{P}_{\varepsilon}^{+}, \eta\left(t, \widetilde{P}_{\varepsilon}^{-}\right) \subset \widetilde{P}_{\varepsilon}^{-}$

    (ⅴ) ∀t∈[0, 1],若Jλβ(·)是偶泛函,则映射η(t,·)是奇的.

    定义1 [16]   如果下列形变性质成立:若Kc\W=$\varnothing$,其中W=PQ,则存在ε0>0,使得ηC(EE)满足:

    (a) $\eta(\widetilde{P}) \subset \widetilde{P}, \eta(\widetilde{Q}) \subset \widetilde{Q}$

    (b) η|Ic-2ε=id;

    (c) η(Ic+ε\W)⊂Ic-ε.

    则{PQ}是c水平集上关于I的可容许不变集族.

    引理3 [16]  假设{PQ}是c水平集上关于I的可容许不变集族,其中$c \geqslant c^*=\inf\limits _{u \in \partial P \cap \partial Q} I(u)$,并且存在一个连续映射Ψ0$\triangle \longmapsto E$满足:

    (ⅰ) Ψ0(1△)⊂PΨ0(2△)⊂Q

    (ⅱ) Ψ0(0△)∩M=$\varnothing$,其中M=PQ

    (ⅲ) $\sup \limits _{u \in \varPsi_0\left(\partial_0 \triangle\right)} I(u)<c^*$.

    其中

    定义$c=\inf\limits _{\varPsi \in \varGamma} \sup \limits _{u \in \varPsi(\Delta) \backslash W} I(u)$,其中

    cc*Kc\W$\varnothing$.

    定理1的证明

    我们将利用引理3证明方程(3)存在变号解,再通过取极限得到方程(1)的基态变号解. 设P=Pε+Q=Pε-I=JλβS=E\W. 由引理2可知,{Pε+Pε-}是泛函Jλβc水平集上的可容许不变集族. 下面将分3步来完成定理1的证明.

    步骤1   取v1v2C0,r(B1(0)),使得supp(v1)∩supp(v2)=$\varnothing$,其中v1 < 0,v2>0,Br(0)={x$\mathbb{R}$3:|x| < r}. 当(ts)∈△时,设

    显然

    由文献[13]的引理3.10可知,对任意的u∂Pε+∂Pε-$J_{\lambda, \beta}(u) \geqslant \frac{\varepsilon^2}{4}$. 因此,$c^*=\inf\limits _{u \in \partial P_{\varepsilon}^{+} \cap \partial P_{\varepsilon}^{-}} J_{\lambda, \beta}(u) \geqslant \frac{\varepsilon^2}{4}$. 设ut=φ0(t,1-t),t∈[0, 1]. 我们有

    uφ0(0△)时,‖ut22$\ell$R. 对任意固定的uM=Pε+Pε-

    所以,存在m>0,使得‖uq. 因此,φ0(0△)∩Pε+Pε-=$\varnothing$. 通过直接计算可以得到

    由条件(g3)可知,对于任意的t$\mathbb{R}$,存在正常数C3C4,使得G(t)≥-C3|t|p-C4. 结合(1)式、(4)式和(6)式可以得到

    因为$r \in\left(\max \left\{p, \frac{9}{2}\right\}, 6\right)$,所以当R趋于正无穷时,Jλβ(ut)趋于负无穷. 因此,存在充分大的R使得

    根据以上分析可知,Jλβ满足引理3的条件,所以$c_{\lambda, \beta}=\inf\limits _{\varphi \in \varGamma} \sup \limits _{u \in \varphi(\Delta) \backslash W} J_{\lambda, \beta}(u)$Jλβ的临界值,cλβc*. 因此,存在uλβE\(Pε+Pε-),使得Jλβ(uλβ)=cλβJλβ(uλβ)=0.

    步骤2   取λβ趋于0. 根据cλβ的定义,对于任意的(λβ)∈(0,1]×(0,1],有

    不失一般性,假设λ=β. 取序列{λn}⊂(0,1]满足λn趋于0+,则存在Jλnβn的临界点序列{uλn}(仍记为{un})使得Jλnβn(un)=cλnβn. 下面要证{un}在E中有界. 由Jλβ的定义可以得到

    此外,由引理1可得

    用4,$-\frac{1}{\mu}$,-1分别乘(8)式、(9)式、(10)式,最后相加得到

    因为$\alpha<\frac{\mu-2}{3 \mu+2}$并且μ>2,结合条件(V2)和(7)式可得

    又由条件(g1)可知

    利用Sobolev连续嵌入,

    因此,当υ>0充分小时,

    则存在正常数C5,使得

    此外,结合(2)式、(7)式和(8)式以及假设条件(V1),(g2),(g3),可以得到:对任意的ε>0,存在Cε>0,使得

    由插值不等式、Sobolev不等式和Young不等式,可以推出对任意的ε>0,存在$\widetilde{C}_{\varepsilon}>0$,使得

    结合(11)式、(12)式和(13)式,可知{un}在E中有界. 又因为

    并且,对于任意的ΨC0($\mathbb{R}$3),

    所以,{un}是Jc*水平集上的有界PS序列. 因此,存在u*E,使得{un}在E中弱收敛到u*,{un}在Lq($\mathbb{R}$3)中强收敛到u*q∈(2,6).

    因为{un}在E中有界,所以

    由条件(g2),(g3)可得:对任意的ε>0,存在Cε>0,使得|g(t)|≤ε|t|+Cε|t|p-1. 结合Hölder不等式,有

    因此

    由〈J′(un)-J′(u*),un-u*〉0可知,{un}在E中强收敛到u*,此外,J′(u*)=0. 所以由unE\(Pε+Pε-)可以得到u*E\(Pε+Pε-),因此,u*是方程(1)的变号解.

    步骤3   定义

    根据步骤2的证明过程可知Θ$\varnothing$cc*. 由c的定义,存在序列{un}∈Θ,使得J(un)→cJ′(un)=0,un±≢0. 根据步骤2的讨论,Jλβcλβ水平集上的有界PS序列也是Jc*水平集上的有界PS序列,所以,{un}在E中有界,并且由上一步的结论可知,{un}在E中强收敛到u,所以J(u)=cJ′(u)=0. 此外,由〈J′(un),un±〉=0可推断出:对于任意的0 < ε < 1,存在Cε>0,使得

    根据Sobolev不等式,有

    由{un}在E中有界并且p>2可知,$\int_{\mathbb{R}^3}\left|u_n^{\pm}\right|^p \mathrm{~d} x \geqslant C$,所以$\int_{\mathbb{R}^3}\left|u^{\pm}\right|^p \mathrm{~d} x \geqslant C$. 因此u±≢0. 由以上分析可知uΘ并且$J(u)=\inf\limits _{v \in \varTheta} J(v)$,即J(u)≤J(v)(∀vΘ). 因此,u是方程(1)的基态变号解. 定理1的证明完成.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return