Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 48 Issue 7
Article Contents

ZHANG Lin, LI Yangrong. Backward Compact Random Attractors for Stochastic Zakharov Lattice Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(7): 53-59. doi: 10.13718/j.cnki.xsxb.2023.07.008
Citation: ZHANG Lin, LI Yangrong. Backward Compact Random Attractors for Stochastic Zakharov Lattice Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(7): 53-59. doi: 10.13718/j.cnki.xsxb.2023.07.008

Backward Compact Random Attractors for Stochastic Zakharov Lattice Equation

More Information
  • Corresponding author: LI Yangrong
  • Received Date: 05/11/2022
    Available Online: 20/07/2023
  • MSC: O193

  • When the external force is backward tempered, by estimating the solution, it is first proved that the random Zakharov lattice equation with multiplicative noise has backward compact uniformly absorbing set on the space E=l2×l2×$\ell $2, then it is proved that the random dynamical system generated by this equation is backward asymptotically compact on the absorbing set. Finally, by the Existence theorem of backward compact attractors, it is proved that there exists a backward compact random attractor for the stochastic Zakharov lattice equation in the space E=l2×l2×$\ell $2.

  • 加载中
  • [1] WANG J H, GU A H. Existence of Backwards-Compact Pullback Attractors for Non-Autonomous Lattice Dynamical Systems[J]. Journal of Difference Equations and Applications, 2016, 22(12): 1906-1911. doi: 10.1080/10236198.2016.1254205

    CrossRef Google Scholar

    [2] YIN J Y, LI Y R, GU A H. Backwards Compact Attractors and Periodic Attractors for Non-Autonomous Damped Wave Equations on an Unbounded Domain[J]. Computers & Mathematics with Applications, 2017, 74(4): 744-758.

    Google Scholar

    [3] LI Y R, YANG S. Backward Compact and Periodic Random Attractors for Non-Autonomous Sine-Gordon Equations with Multiplicative Noise[J]. Communications on Pure and Applied Analysis, 2019, 18(3): 1155-1175. doi: 10.3934/cpaa.2019056

    CrossRef Google Scholar

    [4] 宋立, 李扬荣. 非自治随机p-Laplacian格点方程的后向紧随机吸引子[J]. 西南大学学报(自然科学版), 2021, 43(4): 92-99.

    Google Scholar

    [5] 乔闪闪, 李扬荣. 随机Kuramoto-Sivashinsky格点方程的后向紧随机吸引子[J]. 西南师范大学学报(自然科学版), 2022, 47(8): 48-53. doi: 10.13718/j.cnki.xsxb.2022.08.007

    CrossRef Google Scholar

    [6] 张子怡, 李扬荣. 随机波动格点方程的后向紧随机吸引子[J]. 西南师范大学学报(自然科学版), 2022, 47(10): 19-25.

    Google Scholar

    [7] ZHOU S F, HUANG J W, HAN X Y. Compact Kernel Sections for Dissipative Non-autonomous Zakharov Equation on Infinite Lattices[J]. Communications on Pure and Applied Analysis, 2010, 9(1): 193-210. doi: 10.3934/cpaa.2010.9.193

    CrossRef Google Scholar

    [8] BAI Y, ZHOU S F. Random Attractor of Stochastic Zakharov Lattice System[J]. Journal of Applied Analysis and Computation, 2011, 1(2): 155-171.

    Google Scholar

    [9] YIN F Q, ZHOU S F, OUYANG Z G, et al. Attractor for Lattice System of Dissipative Zakharov Equation[J]. Acta Mathematica Sinica(English Series), 2009, 25(2): 321-342. doi: 10.1007/s10114-008-5595-8

    CrossRef Google Scholar

    [10] ZHOU S F, BAI Y. Random Attractor and Upper Semi-Continuity for Zakharov Lattice System with Multiplicative White Noise[J]. Journal of Difference Equations and Applications, 2014, 20(2): 312-338. doi: 10.1080/10236198.2013.845663

    CrossRef Google Scholar

    [11] TANG L, ZHOU S F, HAN Z F. Random Exponential Attractor for a Non-autonomous Zakharov Lattice System with Multiplicative White Noise[J]. Journal of Difference Equations and Applications, 2021, 27(6): 902-921. doi: 10.1080/10236198.2021.1945047

    CrossRef Google Scholar

    [12] WANG S L, LI Y R. Longtime Robustness of Pullback Random Attractors for Stochastic Magneto-Hydrodynamics Equations[J]. Physica D: Nonlinear Phenomena, 2018, 382: 46-57.

    Google Scholar

    [13] DAMASCELLI L. Comparison Theorems for Some Quasilinear Degenerate Elliptic Operators and Applications to Symmetry and Monotonicity Results[J]. Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 1998, 15(4): 493-516. doi: 10.1016/s0294-1449(98)80032-2

    CrossRef Google Scholar

    [14] CARABALLO T, LU K N. Attractors for Stochastic Lattice Dynamical Systems with a Multiplicative Noise[J]. Frontiers of Mathematics in China, 2008, 3(3): 317-335. doi: 10.1007/s11464-008-0028-7

    CrossRef Google Scholar

    [15] DUAN J Q, LU K N, SCHMALFUSS B. Invariant Manifolds for Stochastic Partial Differential Equations[J]. The Annals of Probability, 2003, 31(4): 2109-2135.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(308) PDF downloads(48) Cited by(0)

Access History

Other Articles By Authors

Backward Compact Random Attractors for Stochastic Zakharov Lattice Equation

    Corresponding author: LI Yangrong

Abstract: 

When the external force is backward tempered, by estimating the solution, it is first proved that the random Zakharov lattice equation with multiplicative noise has backward compact uniformly absorbing set on the space E=l2×l2×$\ell $2, then it is proved that the random dynamical system generated by this equation is backward asymptotically compact on the absorbing set. Finally, by the Existence theorem of backward compact attractors, it is proved that there exists a backward compact random attractor for the stochastic Zakharov lattice equation in the space E=l2×l2×$\ell $2.

  • 若随机吸引子的后向并是预紧的,则称该吸引子为后向紧随机吸引子. 文献[1-6]研究了吸引子的存在性以及吸引子的后向紧性,并建立了相对完善的理论体系. 文献[7-11]对随机Zakharov格点方程的吸引子进行了研究. 本文将在文献[10]的基础上,研究带有乘法噪音的随机Zakharov格点方程的后向紧吸引子的存在性.

1.   非自治随机动力系统
  • 本文将在l2×$\ell $2空间上讨论如下带有乘法噪音的非自治随机Zakharov格点方程:

    其中αλβγ>0,$\mathbb{Z}$是整数集

    (W1W2) 是定义在度量动力系统(Ω$\mathscr{F}$$\mathbb{P}$,{θt}t$\mathbb{R}$)上相互独立的双边实值维纳过程,其中

    $\mathscr{F}$Ω上由紧开拓扑生成的Borel σ-代数,$\mathbb{P}$是(Ω$\mathscr{F}$)上的维纳测度. 在Ω上定义映射族

    $ \circ $表示Stratonovich积分意义下的乘法噪声. 对于外力项

    有如下假设:

    (F1) gLloc2($\mathbb{R}$l2)是后向缓增的,满足

    (F2) hLloc2($\mathbb{R}$$\ell $2)是后向缓增的,满足

    (F3) $2\mu > \frac{{4a\lambda }}{{\sqrt \pi }} + \frac{{a\left( {\lambda + 2\lambda \varepsilon - \alpha {\lambda ^2}} \right)}}{{\sqrt {\lambda \beta \pi } }} + \frac{{{a^2}{\lambda ^2}}}{{2\sqrt {\lambda \beta } }} + \frac{{2b}}{{\sqrt \pi }}$,其中

    空间l2$\ell $2上的有界线性算子A的定义为

    A=B*B=BB*,并且满足‖Bb2≤ 4‖b2.

    对任意u=(uk)k$\mathbb{Z}$v=(vk)k$\mathbb{Z}$l2$\ell $2,定义空间l2$\ell $2上的内积和范数分别为

    其中vv共轭,E=lλβ2×l2×$\ell $2,并且‖·‖λβ与‖·‖等价.

    其中${z_1}(\theta ) = - \int_{ - \infty }^0 {{{\rm{e}}^s}} {\theta _t}{\omega _1}(s){\rm{d}}s$是方程dX+Xdt=dW1(t)的解,${z_2}(\theta ) = - \int_{ - \infty }^0 {{{\rm{e}}^s}} {\theta _t}{\omega _2}(s){\rm{d}}s$是方程dY+Ydt=dW2(t)的解,$\varepsilon = \frac{{\alpha \beta \lambda }}{{\lambda {\alpha ^2} + 4\beta }}$,易得$|v| = |\hat v|$,并且由文献[10]可得,z1(θtω1),z2(θtω2)关于t连续,且

    则方程(1)可以转化为以下等价形式:

    φ0=(u0y0v0)T,则方程(8)可以改写为如下简单矩阵形式:

    由文献[8, 10]可知,若假设(F1)-(F3)成立,对∀T>0,φ0E,方程(8)存在唯一的解φ(·,τωφ0)∈C([τ,+∞),E),且依赖于初值φ0连续. 因此方程(8)在(Ω$\mathscr{F}$$\mathbb{P}$,{θt}t$\mathbb{R}$)上能生成一个连续的随机动力系统{Φ(t)},对φ0Et≥0,τ$\mathbb{R}$ωΩ,有

    可以验证φ是一个非自治的随机动力系统,即满足

    在下文中,设$\mathscr{D}$X中所有后向缓增集构成的集合,若集合D$\mathscr{D}$当且仅当

    则可以证明$\mathscr{D}$是包含封闭的,即若A$\tilde A$$\tilde A$$\mathscr{D}$,有A$\mathscr{D}$成立.

2.   解的估计
  • 引理1  若假设(F1)-(F3)成立,则对任意后向缓增集D$\mathscr{D}$,∀τ$\mathbb{R}$ωΩ,存在T=T(Dτω)≥1,使得当φs-tD(s-tθ-sω) 时,有

    其中

      对任意固定的τ$\mathbb{R}$ωΩφs-tD(s-tθ-tω),令

    其中sτ. φ(r)与方程(9)作内积,可得

    对于(13)式中的每一项,利用Hölder不等式以及Young不等式,可得

    则由(13)-(15)式可得

    对(16)式利用Gronwall不等式,可得

    由假设(F3)可得

    对(17)式关于s∈(-∞,τ]取上确界,结合(10)式可知,存在T(Dsω)≥1,使得当tT时,有

    因此(11)式得证,即

    引理2  若假设(F1)-(F3)成立,则对∀η>0,(τωD)∈($\mathbb{R}$ ×Ω× $\mathscr{D}$),φs-tD(s-tθ-sω),存在T(ητωD)>0,k(ητωD)≥1,使得

      构造一个光滑函数ρ(s)∈C1([0,∞),[0,1]),满足:当|s| ≤1时,ρ(s)=0;当|s|≥2时,ρ(s)=1;当1≤s≤2时,0≤ρ(s)≤1;且|ρ′(s)| < ρ0ρ0>0. 令

    其中

    $\mathit{\boldsymbol{\hat \varphi }}$(r)与(9)式作内积(·,·)E,并取其实部,可得

    易证

    则有

    将(19)-(21)式代入(18)式,可得

    其中c1c2,…,c9为常数,对(22)式利用Gronwall引理,可得

    因为φs-tD(s-tθ-tω)(sτ),结合(10)式可得

    由引理1和假设(F1)-(F3)可得,存在T>0,当t>T时,有

    因此,由(25)-(28)式可得,对∀η>0,(τωD)∈($\mathbb{R}$ ×Ω× $\mathscr{D}$),φs-tD(s-tθ-tω),存在T(ετωD)>0,k(ετωD)≥1,使得

3.   后向紧随机吸引子
  • 定理1  若假设(F1)-(F3)成立,则方程(1)所生成的动力系统存在后向紧随机吸引子.

      因为{φ(t)}t≥0满足文献[12](定理3.9)中的拉回吸引子的两个存在性条件:

    (ⅰ) 非自治随机动力系统{φ(t)}t≥0存在D-拉回随机吸收集KD,其中

    (ⅱ) 非自治随机动力系统{φ(t)}t≥0存在$\mathscr{D}$ -拉回后向一致吸收集$\mathscr{K}$$\mathscr{D}$,其中

    由文献[4]可得,非自治动力系统{φ(t)}t≥0在吸收集K$\mathscr{D}$上是后向紧的. 因此方程(8)生成的非自治随机动力系统φ(t) 存在唯一的后向紧$\mathscr{D}$-拉回吸引子$\mathscr{A}$$\mathscr{D}$和唯一的可测D-拉回吸引子AD. 再由文献[13]中的定理6.1知$\mathscr{A}$ =A,故吸引子$\mathscr{A}$也是随机的,即φ(t)存在唯一的后向紧$\mathscr{D}$-拉回随机吸引子$\mathscr{A}$$\mathscr{D}$. 再由文献[14-15]可知方程(1)与(8)生成的随机动力系统共轭,进而可得方程(1)存在后向紧随机吸引子.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return