[1]
|
RIESS A G, FILIPPENKO A V, CHALLIS P, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant[J]. Astronomical Journal, 1998, 116(3): 1009-1038. doi: 10.1086/300499
CrossRef Google Scholar
|
[2]
|
PERLMUTTER S, ALDERING G, GOLDHABER G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae[J]. The Astrophysical Journal Letters, 1999, 517(2): 565-586. doi: 10.1086/307221
CrossRef Google Scholar
|
[3]
|
ASTIER P, GUY J, REGNAULT N et al. The Supernova Legacy Survey: Measurement of Ωm, ΩΛ and w from the First Year Data Set[J]. Astronomical Journal, 2006, 447(1): 31-48.
Google Scholar
|
[4]
|
ABAZAJIAN K, ADELMAN-MCCARTHY J K and AGVEROS M A, et al. The Second Data Release of the Sloan Digital Sky Survey[J]. The Astronomical Journal, 2004, 128(1): 502-512. doi: 10.1086/421365
CrossRef Google Scholar
|
[5]
|
ABAZAJIAN K, ADELMAN-MCCARTHY J K, AGVEROS M A, et al. The Third Data Release of the Sloan Digital Sky Survey[J]. The Astronomical Journal, 2005, 129(3): 1755-1959. doi: 10.1086/427544
CrossRef Google Scholar
|
[6]
|
SPERGEL D N, VERDE L and PEIRIS H V, et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters[J]. The Astrophysical Journal Letters Supplement Series, 2003, 148(1): 175-194. doi: 10.1086/377226
CrossRef Google Scholar
|
[7]
|
SAHNI V, STAROBINSKY A A. The Case for a Positive Cosmological Λ-term[J]. International Journal of Modern Physics D, 2000, 9(4): 373-443. doi: 10.1142/S0218271800000542
CrossRef Google Scholar
|
[8]
|
PEEBLES P J E, RATRA B. The Cosmological Constant and Dark Energy[J]. Reviews of Modern Physics, 75(2): 559-606. doi: 10.1103/RevModPhys.75.559
CrossRef Google Scholar
|
[9]
|
PEEBLES P J E, RATRA B. Cosmology with a Time-Variable Cosmological "Constant"[J]. The Astrophysical Journal Letters, 1988, 325: L17-L20. doi: 10.1086/185100
CrossRef Google Scholar
|
[10]
|
RATRA B, PEEBLES P J E. Cosmological Consequences of a Rolling Homogeneous Scalar Field[J]. Physical Review D, 1988, 37(12): 3406-3427. doi: 10.1103/PhysRevD.37.3406
CrossRef Google Scholar
|
[11]
|
WETTERICH C. Cosmology and the Fate of Dilatation Symmetry[J]. Nuclear Physics B, 1988, 302(4): 668-696. doi: 10.1016/0550-3213(88)90193-9
CrossRef Google Scholar
|
[12]
|
FRIEMAN J A, HILL C T, STEBBINS A, et al. Cosmology with Ultralight Pseudo Nambu-Goldstone Bosons[J]. physical Review Letters, 1995, 75(11): 2077-2080. doi: 10.1103/PhysRevLett.75.2077
CrossRef Google Scholar
|
[13]
|
TURNER M S, WHITE M. CDM Models with a Smooth Component[J]. Physical Review D, 56(8): R4439-R4443. doi: 10.1103/PhysRevD.56.R4439
CrossRef Google Scholar
|
[14]
|
CALDWELL R R, DAVE R, STEINHARDT P J. Cosmological Imprint of an Energy Component with General Equation of State[J]. Physical Review Letters, 1998, 80(8): 1582-1585. doi: 10.1103/PhysRevLett.80.1582
CrossRef Google Scholar
|
[15]
|
ARMENDARIZ-PICON C, MUKHANOV V, STEINHARDT P J. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration[J]. Physical Review Letter, 2000, 85(21): 4438-4441. doi: 10.1103/PhysRevLett.85.4438
CrossRef Google Scholar
|
[16]
|
ARMENDARIZ-PICON C, MUKHANOV V, STEINHARDT P J. Essentials of k-Essence[J]. Physical Review D, 2001, 63(10): 103510. doi: 10.1103/PhysRevD.63.103510
CrossRef Google Scholar
|
[17]
|
CALDWELL R R. A Phantom Menace? Cosmological Consequences of a Dark Energy Component with Super-Negative Equation of State[J]. Physics Letterss B, 2002, 545(1-2): 23-29. doi: 10.1016/S0370-2693(02)02589-3
CrossRef Google Scholar
|
[18]
|
CALDWELL R R, KAMIONKOWSKI M, WEINBERG N N. Phantom Energy: Dark Energy with w < -1 Causes a Cosmic Doomsday[J]. Physical Review Letters, 2003, 91(7): 071301. doi: 10.1103/PhysRevLett.91.071301
CrossRef Google Scholar
|
[19]
|
SHIN'ICHI NOJIRI, ODINTSOV S D. Quantum de Sitter Cosmology and Phantom Matter[J]. Physics Letters B, 2003, 562(3-4): 147-152. doi: 10.1016/S0370-2693(03)00594-X
CrossRef Google Scholar
|
[20]
|
SHIN'ICHI NOJIRI, ODINTSOV S D. De Sitter Brane Universe Induced by Phantom and Quantum Effects[J]. Physics Letters B, 2003, 565: 1-9. doi: 10.1016/S0370-2693(03)00753-6
CrossRef Google Scholar
|
[21]
|
SEN A. Tachyon Matter[J]. Journal of High Energy Physics, 2002(7): 65.
Google Scholar
|
[22]
|
HAMED N A, CHENG H S, LUTY M A, et al. Ghost Condensation and a Consistent Infrared Modification of Gravity[J]. Journal of High Energy Physics, 2004(5): 74.
Google Scholar
|
[23]
|
PIAZZA F, TSUJIKAWA S. Dilatonic Ghost Condensate as Dark Energy[J]. Journal of Cosmology and Astroparticle Physics, 2004(7): 4.
Google Scholar
|
[24]
|
FENG B, WANG X L, ZHANG X M. Dark Energy Constraints from the Cosmic Age and Supernova[J]. Physics Letters B, 2005, 607(1-2): 35-41. doi: 10.1016/j.physletb.2004.12.071
CrossRef Google Scholar
|
[25]
|
GUO Z K, PIAO Y S, ZHANG X M, et al. Cosmological Evolution of a Quintom Model of Dark Energy[J]. Physics Letters B, 2005, 608(3-4): 177-182. doi: 10.1016/j.physletb.2005.01.017
CrossRef Google Scholar
|
[26]
|
ZHANF X. An Interacting Two-Fluid Scenario for Quintom Dark Energy[J]. Communications in Theoretical Physics, 2005, 44(4): 762-768. doi: 10.1088/6102/44/4/762
CrossRef Google Scholar
|
[27]
|
ANISIMOV A, BABICHEV E, VIKMAN A. B-inflation[J]. Journal of Cosmology and Astroparticle Physics, 2005, 6: 6.
Google Scholar
|
[28]
|
ELIZALDE E, NOJIRI S, ODINTSOV S D. Late-Time Cosmology in a (Phantom) Scalar-Tensor Theory: Dark Energy and the Cosmic Speed-Up[J]. Physical Review D, 2004, 70(4): 403539.
Google Scholar
|
[29]
|
NOJIRI S, ODINTSOV S D, TSUJIKAWA S. Properties of Singularities in the (Phantom) Dark Energy Universe[J]. Physical Review D, 2005, 71(6): 063004. doi: 10.1103/PhysRevD.71.063004
CrossRef Google Scholar
|
[30]
|
DEFFAYET C, DVALI G, GABADADZE G. Accelerated Universe from Gravity Leaking to Extra Dimensions[J]. Physical Review D, 2002, 65(4): 044023. doi: 10.1103/PhysRevD.65.044023
CrossRef Google Scholar
|
[31]
|
KAMENSHCHIK A, MOSCHELLA U, PASQUIER V. An Alternative to Quintessence[J]. Physics Letters B, 2001, 511(2-4): 265-268. doi: 10.1016/S0370-2693(01)00571-8
CrossRef Google Scholar
|
[32]
|
AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 Results[J]. Astronomy & Astrophysics, 2020, 641: A6.
Google Scholar
|
[33]
|
AMENDOLA L. Coupled Quintessence[J]. Physical Review D, 2000, 62(4): 043511. doi: 10.1103/PhysRevD.62.043511
CrossRef Google Scholar
|
[34]
|
GUO Z K, OHTA N, TSUJIKAWA S. Probing the Coupling Between Dark Components of the Universe[J]. Physical Review D, 2007, 76(2): 023508. doi: 10.1103/PhysRevD.76.023508
CrossRef Google Scholar
|
[35]
|
DALAL N, ABAZAJIAN K and JENKINS E, et al. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy[J]. Physical Review Letters, 2001, 87(14): 141302. doi: 10.1103/PhysRevLett.87.141302
CrossRef Google Scholar
|
[36]
|
CAMPO S D, HERRERA R, OLIVARES G, et al. Interacting Models of Soft Coincidence[J]. Physical Review D, 2006, 74(2): 023501. doi: 10.1103/PhysRevD.74.023501
CrossRef Google Scholar
|
[37]
|
VALENTINO E D, MELCHIORRI A, MENA O, et al. Interacting Dark Energy in a Closed Universe[J]. Monthly Notices of the Royal Astronomical Society, 2021, 502(1): L23-L28. doi: 10.1093/mnrasl/slaa207
CrossRef Google Scholar
|
[38]
|
PAN S, SHAROV G S, Yang wei qiang. Field Theoretic Interpretations of Interacting Dark Energy Scenarios and Recent Observations[J]. Physical Review D, 2020, 101(10): 103533. doi: 10.1103/PhysRevD.101.103533
CrossRef Google Scholar
|
[39]
|
PAN S, YANG W Q, SINGHA C, et al. Observational Constraints on Sign-Changeable Interaction Models and Alleviation of the H0 tension[J]. Physical Review D, 2019, 100(8): 083539. doi: 10.1103/PhysRevD.100.083539
CrossRef Google Scholar
|
[40]
|
BOLOTIN Y L, KOSTENKO A, LEMETS O A, et al. Cosmological Evolution with Interaction Between Dark Energy and Dark Matter[J]. International Journal of Modern Physics D, 2015, 24(03): 1530007. doi: 10.1142/S0218271815300074
CrossRef Google Scholar
|
[41]
|
URBAN F R, ZHITNITSKY A R. The Cosmological Constant from the QCD Veneziano Ghost[J]. Physics Letters B, 2010, 688(1): 9-12. doi: 10.1016/j.physletb.2010.03.080
CrossRef Google Scholar
|
[42]
|
URBAN F R, ZHITNITSKY A R. Cosmological Constant from the Ghost: A Toy Model[J]. Physical Review D, 2009, 80(6): 063001. doi: 10.1103/PhysRevD.80.063001
CrossRef Google Scholar
|
[43]
|
URBAN F R, ZHITNITSKY A R. Cosmological Constant, Violation of Cosmological Isotropy and CMB[J]. Journal of Cosmology and Astroparticle Physics, 2009, 9(18): 1-12.
Google Scholar
|
[44]
|
OHTA N. Dark Energy and QCD Ghost[J]. Physics Letters B, 2011, 695(1-4): 41-44. doi: 10.1016/j.physletb.2010.11.044
CrossRef Google Scholar
|
[45]
|
LIU Y. Interacting Ghost Dark Energy in Complex Quintessence Theory[J]. The European Physical Journal C, 2020, 80: 1204. doi: 10.1140/epjc/s10052-020-08786-y
CrossRef Google Scholar
|
[46]
|
CAI R G, TUO Z L, ZHANG H B, et al. Notes on Ghost Dark Energy[J]. Physical Review D, 2011, 84(12): 123501. doi: 10.1103/PhysRevD.84.123501
CrossRef Google Scholar
|
[47]
|
CAI R G, TUO Z L, ZHANG H B, et al. More on QCD Ghost Dark Energy[J]. Physical Review D, 2012, 86(2): 023511. doi: 10.1103/PhysRevD.86.023511
CrossRef Google Scholar
|
[48]
|
SHEYKHI A, MOVAHED M S. Interacting Ghost Dark Energy in Non-flat Universe[J]. General Relativity and Gravitation, 2012, 44(2): 449-465. doi: 10.1007/s10714-011-1286-3
CrossRef Google Scholar
|
[49]
|
VENEZIANO G. U(1) Without Instantons[J]. Nuclear Physics B, 1979, 159(1-2): 213-224. doi: 10.1016/0550-3213(79)90332-8
CrossRef Google Scholar
|
[50]
|
ROSENZWEIG C, SCHECHTER J, TRAHERN C G. Is the Effective Lagrangian for Quantum Chromodynamics a σ model?[J]. Physical Review D, 1980, 21(12): 3388. doi: 10.1103/PhysRevD.21.3388
CrossRef Google Scholar
|
[51]
|
NATH P, ARNOWITT R. U(1) Problem: Current Algebra and the θ Vacuum[J]. Physical Review D, 1981, 23(2): 473-476. doi: 10.1103/PhysRevD.23.473
CrossRef Google Scholar
|
[52]
|
KAWARABAYASHI K, OHTA N. On the Partical Conservation of the U(1) Current[J]. Progress of Theoretical Physics, 1981, 66(5): 1789-1802. doi: 10.1143/PTP.66.1789
CrossRef Google Scholar
|
[53]
|
HOLDOM B. From Confinement to Dark Energy[J]. Physics Letters B, 2011, 697(4): 351-356. doi: 10.1016/j.physletb.2011.02.024
CrossRef Google Scholar
|
[54]
|
ZHITNITSKY A R, Entropy, Contact Interaction with Horizon, and Dark Energy[J]. Physical Review D, 2011, 84(12): 124008. doi: 10.1103/PhysRevD.84.124008
CrossRef Google Scholar
|
[55]
|
THOMAS E, ZHITNITSKY A R. Topological Susceptibility and Contact Term in QCD: A Toy Model[J]. Physical Review D, 2012, 85(4): 044039. doi: 10.1103/PhysRevD.85.044039
CrossRef Google Scholar
|
[56]
|
KOMATSU E, DUNKLEY J, NOLTA M R, et al. Five-year Wilkinson Microwave Anisotropy Probe Obserbations: Cosmological Interpretation[J]. The Astrophysical Journal Supplement Series, 2009, 180(2): 330-376. doi: 10.1088/0067-0049/180/2/330
CrossRef Google Scholar
|
[57]
|
WEINBERG S, Gravitation, Cosmology: Principles and Applications of the General Theory of Relativity[M]. New York: Wiley and Sons, 1972: 151-172.
Google Scholar
|
[58]
|
YANG W Q, MUKHERJEE A, VALENTINO E D, et al. Interacting Dark Energy with Time Varying Equation of State and the H0 Tension, Physical Review D, 2018, 98(12): 123527. doi: 10.1103/PhysRevD.98.123527
CrossRef Google Scholar
|
[59]
|
DALY R A, DJOROVSKI S G, FREEMAN K A, et al. Improved Constraints on the Acceleration History of the Universe and the Properties of the Dark Energy [J]. The Astrophysical Journal, 2008, 677(1): 1-11. doi: 10.1086/528837
CrossRef Google Scholar
|