Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 48 Issue 8
Article Contents

HONY Yong, ZHAO Qian, ZHANG Lijuan, et al. Construction Conditions and Operator Representations of Inverse Hilbert-Type Integral Inequalities with Quasi-Homogeneous Kernel[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(8): 10-18. doi: 10.13718/j.cnki.xsxb.2023.08.002
Citation: HONY Yong, ZHAO Qian, ZHANG Lijuan, et al. Construction Conditions and Operator Representations of Inverse Hilbert-Type Integral Inequalities with Quasi-Homogeneous Kernel[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(8): 10-18. doi: 10.13718/j.cnki.xsxb.2023.08.002

Construction Conditions and Operator Representations of Inverse Hilbert-Type Integral Inequalities with Quasi-Homogeneous Kernel

More Information
  • Received Date: 10/11/2022
    Available Online: 20/08/2023
  • MSC: O178

  • \lt p \gt Using the weight function method and inverse Hölder integral inequality, the problem of constructing the inverse Hilbert-type integral inequality \lt /p \gt \lt p \gt $\int_0^{+\infty} \int_0^{+\infty} K(x, y)|f(x)||g(y)| \mathrm{d} x \mathrm{~d} y \geqslant M\|f\|_{p, \alpha}^*\|g\|_{q, \beta}^*$ \lt /p \gt \lt p \gt with quasi-homogeneous kernel \lt italic \gt K \lt /italic \gt ( \lt italic \gt x \lt /italic \gt , \lt italic \gt y \lt /italic \gt ) is discussed, where \lt inline-formula \gt $\frac{1}{p}+\frac{1}{q}=1(0 \lt p \lt 1, q \lt 0), f \in L_p^\alpha(0, +\infty), g \in L_q^\beta(0, +\infty).$ \lt /inline-formula \gt The sufficient necessary conditions for constructing the inverse Hilbert-type integral inequality and formula for the best constant factor are obtained, which form a correspondence with the relevant results of the Hilbert-type integral inequality with quasi-homogeneous kernel, which refines a theoretical problem of Hilbert-type inequality, and finally the integral operator \lt /p \gt \lt p \gt $T(f)(y)=\int_0^{+\infty} K(x, y) f(x) \mathrm{d} x \quad f \in L_p^\alpha(0, +\infty)$ \lt /p \gt \lt p \gt is discussed by using the inverse Hilbert-type integral inequality, giving the corresponding operator inequality and several spacial cases, which have some theoretical significance for the study of integral operators. \lt /p \gt
  • 加载中
  • [1] 洪勇, 和炳. Hilbert型不等式的理论与应用(上册) [M]. 北京: 科学出版社, 2023: 26-90.

    Google Scholar

    [2] 杨必成, 陈强. 一个核为双曲正割函数的半离散Hilbert型不等式[J]. 西南师范大学学报(自然科学版), 2015, 40(2): 26-32.

    Google Scholar

    [3] 钟建华, 陈强. 一个单调减非凸的零齐次核Hilbert型不等式[J]. 西南大学学报(自然科学版), 2014, 36(8): 92-96.

    Google Scholar

    [4] 王爱珍. 一个半离散且单调齐次核的Hilbert型不等式[J]. 西南大学学报(自然科学版), 2013, 35(4): 101-105.

    Google Scholar

    [5] RASSIAS M TH, YANG B C. A Reverse Mulholland-Type Inequality in the Whole Plane with Multi-Parameters [J]. Applicable Analysis andDiscrrete Mathematics, 2019, 13: 290-308.

    Google Scholar

    [6] 杨必成, 陈强. 一类非齐次核逆向的Hardy型积分不等式成立的等价条件[J]. 吉林大学学报(理学版), 2017, 55(4): 804-808.

    Google Scholar

    [7] YANG B C, WU S H, WANG A Z. A New Reverse Mulholland-Type Inequality with Multi-Parameters [J]. AIMS Mathematics, 2021, 6(9): 9939-9954. doi: 10.3934/math.2021578

    CrossRef Google Scholar

    [8] RASSIAS M T, YANG B C, MELETIOU G C. A More Accurate Half-Discrete Hilbert-Type Inequality in the Whole Plane and the Reverses [J]. Annals of Functional Analysis, 2021, 12(3): 1-29.

    Google Scholar

    [9] ZHAO C J, CHENG W S. Reverse Hilbert-Type Inequalities [J]. Journal of Mathematics Inequalities, 2019, 13(3): 855-866.

    Google Scholar

    [10] HONG Y, HUANG Q L, YANG B C, et al. The Necessary and Sufficient Conditions for the Existence of a Kind of Hilbert-Type Multiple Integral Inequality with the Non-Homogeneous Kernel and Its Applications [J]. Journal of Inequalities and Applications, 2017, 316: 1-12.

    Google Scholar

    [11] 洪勇, 温雅敏. 齐次核的Hilbert型级数不等式取最佳常数因子的充要条件[J]. 数学年刊(A辑), 2016, 37(3): 329-336.

    Google Scholar

    [12] HE B, HONG Y, LI Z. Conditions for the Validity of a Class of Optimal Hilbert Type Multiple Integral Inequalities with Nonhomogeneous Kernels [J]. Journal of Inequalities and Applications, 2021, 64: 1-12.

    Google Scholar

    [13] 洪勇, 吴春阳, 陈强. 一类非齐次核的最佳Hilbert型积分不等式的搭配参数条件[J]. 吉林大学学报(理学版), 2021, 59(2): 207-212.

    Google Scholar

    [14] HONG Y, HUANG Q L, CHEN Q. The Parameter Conditions for the Existence of the Hilbert-Type Multiple Integral Inequality and Its Best Constant Factor [J]. Annals of Functional Analysis, 2020, 2020: 1-10.

    Google Scholar

    [15] LIAO J Q, HONG Y, YANG B C. Equivalent Conditions of a Hilbert-Type Multiple Integral Inequality Holding [J]. Journal of Function Spaces, 2020, 2020: 1-6.

    Google Scholar

    [16] WANG A Z, YANG B C, CHEN Q. Equivalent Properties of a Reverse Half-Discrete Hilbert'S Inequality [J]. Journal of Inequalities and Applications, 2019, 2019(1): 1-12.

    Google Scholar

    [17] 匡继昌. 常用不等式[M]. 5版. 济南: 山东科学技术出版社, 2021: 4-43.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2282) PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Construction Conditions and Operator Representations of Inverse Hilbert-Type Integral Inequalities with Quasi-Homogeneous Kernel

Abstract: \lt p \gt Using the weight function method and inverse Hölder integral inequality, the problem of constructing the inverse Hilbert-type integral inequality \lt /p \gt \lt p \gt $\int_0^{+\infty} \int_0^{+\infty} K(x, y)|f(x)||g(y)| \mathrm{d} x \mathrm{~d} y \geqslant M\|f\|_{p, \alpha}^*\|g\|_{q, \beta}^*$ \lt /p \gt \lt p \gt with quasi-homogeneous kernel \lt italic \gt K \lt /italic \gt ( \lt italic \gt x \lt /italic \gt , \lt italic \gt y \lt /italic \gt ) is discussed, where \lt inline-formula \gt $\frac{1}{p}+\frac{1}{q}=1(0 \lt p \lt 1, q \lt 0), f \in L_p^\alpha(0, +\infty), g \in L_q^\beta(0, +\infty).$ \lt /inline-formula \gt The sufficient necessary conditions for constructing the inverse Hilbert-type integral inequality and formula for the best constant factor are obtained, which form a correspondence with the relevant results of the Hilbert-type integral inequality with quasi-homogeneous kernel, which refines a theoretical problem of Hilbert-type inequality, and finally the integral operator \lt /p \gt \lt p \gt $T(f)(y)=\int_0^{+\infty} K(x, y) f(x) \mathrm{d} x \quad f \in L_p^\alpha(0, +\infty)$ \lt /p \gt \lt p \gt is discussed by using the inverse Hilbert-type integral inequality, giving the corresponding operator inequality and several spacial cases, which have some theoretical significance for the study of integral operators. \lt /p \gt

  • r≠0,α$\mathbb{R}$,记

    需要指出的是:

    r > 1时,Lrα(0,+∞)是带幂权xα的加权Lebesgue空间,此时记

    r≤1且r≠0时,Lrα(0,+∞)并不构成向量空间,为了区别r>1的情形,此时记

    $\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \alpha, \beta \in \mathbb{R}, K(x, y) \geqslant 0, f(x) \in L_p^\alpha(0, +\infty), g(y) \in L_q^\beta(0, +\infty), $

    为以K(xy)为核的逆向Hilbert型积分不等式,M称为常数因子,M0=sup{M}称为最佳常数因子.

    在充分讨论Hilbert型不等式并取得了大量成果的基础上[1-4],近年来各国学者开始关注逆向Hilbert型不等式[5-9]. 文献[10-16]讨论了Hilbert型不等式的构建问题,从理论上解决了Hilbert型不等式针对各类核的构造参数条件,并得到了加权Lebesgue空间中有界积分算子的构造方法,这在算子理论中是非常有意义的,但目前讨论逆向Hilbert型不等式构造的文献还不多见. 本文针对拟齐次核讨论逆向Hilbert型积分不等式的构造问题,得到了等价的参数条件和最佳常数因子的计算公式.

    λ是一个实数,G(uv)是λ阶齐次非负函数,λ1λ2>0,称K(xy)=G(xλ1yλ2)为拟齐次函数,显然K(xy)具有性质:若t>0,则

    特别地,

    本文中,我们记

1.   预备引理
  • 引理 1  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \lambda_1 \lambda_2>0, \lambda \in \mathbb{R}, G(u, v)$λ阶齐次非负函数,K(xy)=G(xλ1yλ2),$ \frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$,则$\frac{1}{\lambda_1} W_1\left(-\frac{\beta+1}{q}\right)=\frac{1}{\lambda_2} W_2\left(-\frac{\alpha+1}{p}\right)$,且

      因为

    于是

    故有

    利用K(xy)的性质,有

    同理可得

    引理 2 [17]  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), x \in \mathit{\Omega} \subseteq \mathbb{R}^n, \omega(x) \geqslant 0, f(x) \geqslant 0, g(x) \geqslant 0$,则有逆向Hölder积分不等式

    当且当存在常数C使得fp(x)=Cgq(x)时,不等式取等号.

2.   逆向Hilbert型积分不等式的构造定理
  • 定理 1  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \lambda_1 \lambda_2>0, \alpha, \beta, \lambda \in \mathbb{R}, G(u, v)$λ阶齐次非负函数,$K(x, y)=G\left(x^{\lambda_1}, y^{\lambda_2}\right), 0<W_1\left(-\frac{\beta+1}{q}\right)<+\infty, 0<W_2\left(-\frac{\alpha+1}{p}\right)<+\infty$,存在常数σ>0,使得$W_1\left(-\frac{\beta+1}{q} \pm \sigma\right)<+\infty$$W_2\left(-\frac{\alpha+1}{p} \pm \sigma\right)<+\infty$,则:

    (ⅰ) 当且当$\frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$时,存在常数M>0,使得

    其中$f(x) \in L_p^\alpha(0, +\infty), g(y) \in L_q^\beta(0, +\infty)$

    (ⅱ)当$\frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$时,(2)式的最佳常数因子为

    其中$W_0=\left|\lambda_1\right| W_2\left(-\frac{\alpha+1}{p}\right)=\left|\lambda_2\right| W_1\left(-\frac{\beta+1}{q}\right) .$

      不妨设$W_2\left(-\frac{\alpha+1}{p} \pm \sigma\right)<+\infty \text {. }$

    (ⅰ) 充分性  设$\frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$,根据引理1及引理2,有

    $0<M \leqslant W_1^{\frac{1}{p}}\left(-\frac{\beta+1}{q}\right) W_2^{\frac{1}{q}}\left(-\frac{\alpha+1}{p}\right)$,都可得到(2)式.

    必要性  设存在常数M>0使得(2)式成立,记

    2>0,对充分小的ε>0,令

    则有

    同时还有

    根据(3)式和(4)式,有

    因为2>0,由Lebesgue控制收敛定理,有

    因为ε>0充分小,故$\frac{\left|\lambda_1\right| \varepsilon}{p}<\sigma$,于是

    ε为一个趋于0的正项数列{ck},根据Lebesgue控制收敛定理,有

    于是在(5)式中令ε→0+,得

    矛盾,所以2>0不成立.

    2 < 0,对充分小的ε>0,令

    类似地可得

    利用

    及Lebesgue控制收敛定理,令ε→0+,类似地也可得到(6)式,矛盾. 故2 < 0也不能成立.

    综上所述,可得2=0,但λ2≠0,故c=0,即

    (ⅱ) 设$\frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$,则c=0. 若(2)式的最佳常数因子不是$\frac{W_0}{\left|\lambda_1\right|^{\frac{1}{q}}\left|\lambda_2\right|^{\frac{1}{p}}}$,则存在常数M0>0,使得

    由于c=0,根据导出(5)式的方法,得

    由此得到

    ε→0+,得

    于是

    这与$M_0>\frac{W_0}{\left|\lambda_1\right|^{\frac{1}{q}}\left|\lambda_2\right|^{\frac{1}{p}}}$矛盾,故(2)式的常数因子是最佳的.

3.   逆向Hilbert型积分不等式的算子表式
  • K(xy)≥0,定义以K(xy)为核的积分算子T

    根据Hilbert型不等式的基本理论,逆向Hilbert型积分不等式(1)等价于算子不等式

    根据定理1,可得到下列等价定理:

    定理 2  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \lambda_1 \lambda_2>0, \alpha, \beta, \lambda \in \mathbb{R}, G(u, v)$λ阶齐次非负函数,$K(x, y)=G\left(x^{\lambda_1}, y^{\lambda_2}\right), 0<W_1\left(-\frac{\beta+1}{q}\right)<+\infty, 0<W_2\left(-\frac{\alpha+1}{p}\right)<+\infty$,存在常数σ>0,使得$W_1\left(-\frac{\beta+1}{q} \pm \sigma\right)<+\infty$$W_2\left(-\frac{\alpha+1}{p} \pm \sigma\right)<+\infty$,积分算子T由(7)式定义,则:

    (ⅰ) 当且当$\frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$时,存在常数M>0,使得(8)式成立;

    (ⅱ) 当$\frac{\alpha+1}{\lambda_1 p}+\frac{\beta+1}{\lambda_2 q}=\lambda+\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$时,(8)式的最佳常数因子为$\\ \text{sup} \{M\}=\frac{W_0}{\left|\lambda_1\right|^{\frac{1}{q}}\left|\lambda_2\right|^{\frac{1}{p}}}$,其中

    在定理2中取λ1=λ2=1,则可得到关于齐次核积分算子的如下结果:

    推论 1  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \alpha, \beta, \lambda \in \mathbb{R}, K(x, y)$λ阶齐次非负函数,$0<W_1\left(-\frac{\beta+1}{q}\right)<+\infty$$0<W_2\left(-\frac{\alpha+1}{p}\right)<+\infty$,存在常数σ>0,使得$W_1\left(-\frac{\beta+1}{q} \pm \sigma\right)<+\infty$$W_2\left(-\frac{\alpha+1}{p} \pm \sigma\right)<+\infty$,积分算子T由(7)式定义,则:

    (ⅰ) 当且当$\frac{\alpha}{p}+\frac{\beta}{q}=\lambda+1$时,存在常数M>0,使得(8)式成立;

    (ⅱ) 当$\frac{\alpha}{p}+\frac{\beta}{q}=\lambda+1$时,(8)式的最佳常数因子为$\sup \{M\}=W_1\left(-\frac{\beta+1}{q}\right)=W_2\left(-\frac{\alpha+1}{p}\right) .$

    在定理2中取α=β=0,则可得:

    推论 2  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \lambda_1 \lambda_2>0, \lambda \in \mathbb{R}, G(u, v)$λ阶齐次非负函数,$K(x, y)=G\left(x^{\lambda_1}, y^{\lambda_2}\right), 0<W_1\left(-\frac{1}{q}\right)<+\infty, 0<W_2\left(-\frac{1}{p}\right)<+\infty$,存在常数σ>0,使得$W_1\left(-\frac{1}{q} \pm \sigma\right)<+\infty$$W_2\left(-\frac{1}{p} \pm \sigma\right)<+\infty$,积分算子T由(7)式定义,则:

    (ⅰ) 当且当$\lambda+\frac{1}{\lambda_1 q}+\frac{1}{\lambda_2 p}=0$时,存在常数M>0,使得

    (ⅱ) 当$\lambda+\frac{1}{\lambda_1 q}+\frac{1}{\lambda_2 p}=0$时,(9)式的最佳常数因子为$\sup \{M\}=\frac{W_0}{\left|\lambda_1\right|^{\frac{1}{q}}\left|\lambda_2\right|^{\frac{1}{p}}}$,其中

    推论 3  设$\frac{1}{p}+\frac{1}{q}=1(0<p<1, q<0), \lambda>0, 0 \leqslant a<b$,积分算子T

    则有

    其中的常数因子$\frac{2 \pi}{\lambda}(\sqrt{b}-\sqrt{a})$是最佳值.

      记

    $\frac{\alpha}{p}+\frac{\beta}{q}=1 .$又记

    因为0≤a<b,故K(xy)是0阶齐次非负函数. 作变换$t=u^{\frac{2}{\lambda}}$,有

    a>0,因为$h(z)=\frac{z^2}{\left(b+z^2\right)\left(a+z^2\right)}$在上半平面上有两个一阶极点$\sqrt{a} \mathrm{i}$$\sqrt{b} \mathrm{i}$,利用复变函数的残数理论,可求得

    a=0,则易求得$W_1\left(-\frac{\beta+1}{q}\right)=\frac{2 \pi}{\lambda} \sqrt{b} .$

    综上所述,当a≥0时,有

    类似地也可得

    $\sigma=\frac{\lambda}{4}>0$,有

    因为

    从而可推知$W_1\left(-\frac{\beta+1}{q}-\sigma\right)<+\infty.$又因为

    所以可知$W_1\left(-\frac{\beta+1}{q}+\sigma\right)<+\infty$,于是得到$W_1\left(-\frac{\beta+1}{q} \pm \sigma\right)<+\infty \text {. }$

    综上所述,并根据推论1,可知推论3成立.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return