[1]
|
张瑜, 徐志超, 季爱加, 等. bZIP转录因子调控植物次生代谢产物生物合成的研究进展[J]. 植物科学学报, 2017, 35(1):128-137.
Google Scholar
|
[2]
|
HAN S Y, KITAHATA N, SEKIMATA K, et al. A Novel Inhibitor of 9-Cis-Epoxycarotenoid Dioxygenase in Abscisic Acid Biosynthesis in Higher Plants[J]. Plant Physiology, 2004, 135(3):1574-1582.
Google Scholar
|
[3]
|
HUANG Y, GUO Y M, LIU Y T, et al. 9-Cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice[J]. Frontiers in Plant Science, 2018, 9:162.
Google Scholar
|
[4]
|
SEO M, PEETERS A J, KOIWAI H, et al. The Arabidopsis Aldehyde Oxidase 3(AAO3) Gene Product Catalyzes the Final Step in Abscisic Acid Biosynthesis in Leaves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(23):12908-12913.
Google Scholar
|
[5]
|
KROCHKO J E, ABRAMS G D, LOEWEN M K, et al. (+)-Abscisic Acid 8'-Hydroxylase is a Cytochrome P450 Monooxygenase[J]. Plant Physiology, 1998, 118(3):849-860.
Google Scholar
|
[6]
|
MARIN E, NUSSAUME L, QUESADA A, et al. Molecular Identification of Zeaxanthin Epoxidase of Nicotiana Plumbaginifolia, a Gene Involved in Abscisic Acid Biosynthesis and Corresponding to the ABA Locus of Arabidopsis thaliana[J]. The EMBO Journal, 1996, 15(10):2331-2342.
Google Scholar
|
[7]
|
SCHWARTZ S H, TAN B C, GAGE D A, et al. Specific Oxidative Cleavage of Carotenoids by VP14 of Maize[J]. Science, 1997, 276(5320):1872-1874.
Google Scholar
|
[8]
|
TAN B C, SCHWARTZ S H, ZEEVAART J A, et al. Genetic Control of Abscisic Acid Biosynthesis in Maize[J]. PNAS, 1997, 94(22):12235-12240.
Google Scholar
|
[9]
|
OKAMOTO M, TANAKA Y, ABRAMS S R, et al. High Humidity Induces Abscisic Acid 8'-Hydroxylase in Stomata and Vasculature to Regulate Local and Systemic Abscisic Acid Responses in Arabidopsis[J]. Plant Physiology, 2009, 149(2):825-834.
Google Scholar
|
[10]
|
KITAHATA N, SAITO S, MIYAZAWA Y, et al. Chemical Regulation of Abscisic Acid Catabolism in Plants by Cytochrome P450 Inhibitors[J]. Bioorganic & Medicinal Chemistry, 2005, 13(14):4491-4498.
Google Scholar
|
[11]
|
KUROMORI T, MIYAJI T, YABUUCHI H, et al. ABC Transporter AtABCG25 is Involved in Abscisic Acid Transport and Responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2361-2366.
Google Scholar
|
[12]
|
姚依秀, 李玉林, 何艳军, 等. 西瓜NCED基因的鉴定及其对枯萎病和脱落酸的表达模式分析[J]. 分子植物育种, 2022, 20(5):1393-1405.
Google Scholar
|
[13]
|
LI J, WANG X Q, WATSON M B, et al. Regulation of Abscisic Acid-Induced Stomatal Closure and Anion Channels by Guard Cell AAPK Kinase[J]. Science, 2000, 287(5451):300-303.
Google Scholar
|
[14]
|
ARMSTRONG F, LEUNG J, GRABOV A, et al. Sensitivity to Abscisic Acid of Guard-Cell K+ Channels is Suppressed by Abi1-1, a Mutant Arabidopsis Gene Encoding a Putative Protein Phosphatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(21):9520-9524.
Google Scholar
|
[15]
|
FUJII H, CHINNUSAMY V, RODRIGUES A, et al. In Vitro Reconstitution of an Abscisic Acid Signalling Pathway[J]. Nature, 2009, 462(7273):660-664.
Google Scholar
|
[16]
|
KANG J, HWANG J U, LEE M, et al. PDR-Type ABC Transporter Mediates Cellular Uptake of the Phytohormone Abscisic Acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2355-2360.
Google Scholar
|
[17]
|
JARZYNIAK K M, JASIN'SKI M. Membrane Transporters and Drought Resistance-a Complex Issue[J]. Frontiers in Plant Science, 2014, 5:687.
Google Scholar
|
[18]
|
江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展[J]. 江苏农业学报, 2007, 23(4):360-365.
Google Scholar
|
[19]
|
FUJITA Y, YOSHIDA T, YAMAGUCHI-SHINOZAKI K. Pivotal Role of the AREB/ABF-SnRK2 Pathway in ABRE-Mediated Transcription in Response to Osmotic Stress in Plants[J]. Physiologia Plantarum, 2013, 147(1):15-27.
Google Scholar
|
[20]
|
DITTRICH M, MUELLER H M, BAUER H, et al. The Role of Arabidopsis ABA Receptors from the PYR/PYL/RCAR Family in Stomatal Acclimation and Closure Signal Integration[J]. Nature Plants, 2019, 5(9):1002-1011.
Google Scholar
|
[21]
|
PAN JJ, WANG H P, HU Y R, et al. Arabidopsis VQ18 and VQ26 Proteins Interact with ABI5 Transcription Factor to Negatively Modulate ABA Response during Seed Germination[J]. The Plant Journal:for Cell and Molecular Biology, 2018, 95(3):529-544.
Google Scholar
|
[22]
|
CHEN K, LIG J, BRESSAN R A, et al. Abscisic Acid Dynamics, Signaling, and Functions in Plants[J]. Journal of Integrative Plant Biology, 2020, 62(1):25-54.
Google Scholar
|
[23]
|
ARC E, SECHET J, CORBINEAU F, et al. ABA Crosstalk with Ethylene and Nitric Oxide in Seed Dormancy and Germination[J]. Frontiers in Plant Science, 2013, 4:63.
Google Scholar
|
[24]
|
GONZALEZ-GUZMAN M, PIZZIO G A, ANTONI R, et al. Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid[J]. The Plant Cell, 2012, 24(6):2483-2496.
Google Scholar
|
[25]
|
NAKASHIMA K, FUJITA Y, KANAMORI N, et al. Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy[J]. Plant &Cell Physiology, 2009, 50(7):1345-1363.
Google Scholar
|
[26]
|
LIN Z, LI Y, WANG Y B, et al. Initiation and Amplification of SnRK2 Activation in Abscisic Acid Signaling[J]. Nature Communications, 2021, 12:2456.
Google Scholar
|
[27]
|
HRABAK E M, CHAN C W M, GRIBSKOV M, et al. The Arabidopsis CDPK-SNRK Superfamily of Protein Kinases[J]. Plant Physiology, 2003, 132(2):666-680.
Google Scholar
|
[28]
|
SCHWEIGHOFER A. Plant PP2C Phosphatases:Emerging Functions in Stress Signaling[J]. Trends in Plant Science, 2004, 9(5):236-243.
Google Scholar
|
[29]
|
MÖNKE G, ALTSCHMIED L, TEWES A, et al. Seed-Specific Transcription Factors ABI3 and FUS3:Molecular Interaction with DNA[J]. Planta, 2004, 219(1):158-166.
Google Scholar
|
[30]
|
REKHTER D, LVDKE D, DING Y L, et al. Isochorismate-Derived Biosynthesis of the Plant Stress Hormone Salicylic Acid[J]. Science, 2019, 365(6452):498-502.
Google Scholar
|
[31]
|
SHI M. CRISPR/Cas9-Mediated Targeted Mutagenesis of bZIP2 in Salvia Miltiorrhiza Leads to Promoted Phenolic Acid Biosynthesis[J]. Industrial Crops and Products, 2021, 167:113560.
Google Scholar
|
[32]
|
FU R, ZHANG P Y, JIN G, et al. Versatility in Acyltransferase Activity Completes Chicoric Acid Biosynthesis in Purple Coneflower[J]. Nature Communications, 2021, 12:1563.
Google Scholar
|
[33]
|
MOGLIA A, ACQUADRO A, ELJOUNAIDI K, et al. Genome-Wide Identification of BAHD Acyltransferases and in Vivo Characterization of HQT-Like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke[J]. Frontiers in Plant Science, 2016, 7:1424.
Google Scholar
|
[34]
|
沈丽红, 任加惠, 金雯芳, 等. 一氧化氮信号在脱落酸诱导丹参酚酸类成分积累中的作用[J]. 生物工程学报, 2016, 32(2):222-230.
Google Scholar
|
[35]
|
MA P D, LIUJ L, ZHANGC L, et al. Regulation of Water-Soluble Phenolic Acid Biosynthesis in Salviamiltiorrhiza Bunge[J]. Applied Biochemistry and Biotechnology, 2013, 170(6):1253-1262.
Google Scholar
|
[36]
|
DENG C P, SHI M, FU R, et al. ABA-Responsive Transcription Factor bZIP1 is Involved in Modulating Biosynthesis of Phenolic Acids and Tanshinones in Salvia miltiorrhiza[J]. Journal of Experimental Botany, 2020, 71(19):5948-5962.
Google Scholar
|
[37]
|
YAMAMOTOL Y, KOYAMA R, DE ASSIS A M, et al. Phenolic Compounds in Juice of "Isabel" Grape Treated with Abscisic Acid for Color Improvement[J]. BIO Web of Conferences, 2015, 5:01014.
Google Scholar
|
[38]
|
任广喜. 甘草酸合成调控网络中ABA关键功能基因NCEDs变异对甘草酸合成的影响研究[D]. 北京:北京中医药大学, 2016.
Google Scholar
|
[39]
|
BEFFA R S, HOFER R M, THOMAS M, et al. Decreased Susceptibility to Viral Disease of[Beta]-1, 3-Glucanase-Deficient Plants Generated byAntisenseTransformation[J]. The Plant Cell, 1996, 8(6):1001-1011.
Google Scholar
|
[40]
|
WU J, WANGX C, LIU Y, et al. Flavone Synthases from Lonicera japonica and L. macranthoides Reveal Differential Flavone Accumulation[J]. Scientific Reports, 2016, 6:19245.
Google Scholar
|
[41]
|
罗庆华, 刘昌敏, 黄凯丰. 水芹内源激素含量及其与产量和黄酮的关系初探[J]. 分子植物育种, 2019, 17(9):3040-3045.
Google Scholar
|
[42]
|
吴琼. ABA-乙烯互作调控樱桃番茄果实成熟的效应与机理研究[D]. 杭州:浙江大学, 2019.
Google Scholar
|
[43]
|
吴觉天. 采后ABA和BTH处理对马铃薯块茎快速愈伤的作用及部分机理[D]. 兰州:甘肃农业大学, 2014.
Google Scholar
|
[44]
|
SU L T, LV A M, WEN W W, et al. MsMYB741 is Involved in Alfalfa Resistance to Aluminum Stress by Regulating Flavonoid Biosynthesis[J]. The Plant Journal:for Cell and Molecular Biology, 2022, 112(3):756-771.
Google Scholar
|
[45]
|
伍小方, 高国应, 左倩, 等. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究[J]. 植物遗传资源学报, 2020, 21(5):1270-1278.
Google Scholar
|
[46]
|
PENG X J, LIU H, CHEN P, et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage[J]. Molecular Plant, 2019, 12(5):661-677.
Google Scholar
|
[47]
|
LIU C, YU H S, RAO X L, et al. Abscisic Acid Regulates Secondary Cell-Wall Formation and Lignin Deposition in Arabidopsis thaliana through Phosphorylation of NST1[J]. ProceedingsoftheNational Academy of Sciences of the United States of America, 2021, 118(5):e2010911118.
Google Scholar
|
[48]
|
WODZICKI T J, WODZICKI A B. Seasonal Abscisic Acid Accumulation in Stem Cambial Region of Pinus silvestris, and Its Contribution to the Hypothesis of a Late-Wood Control System in Conifers[J]. Physiologia Plantarum, 1980, 48(3):443-447.
Google Scholar
|
[49]
|
RODRÍGUEZ-CONCEPCIÓN M, BORONAT A. Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. aMetabolic Milestone Achieved through Genomics[J]. Plant Physiology, 2002, 130(3):1079-1089.
Google Scholar
|
[50]
|
AHARONI A, O'CONNELL A P. Gene Expression Analysis of Strawberry Achene and Receptacle Maturation using DNA Microarrays[J]. Journal of Experimental Botany, 2002, 53:2073-2087.
Google Scholar
|
[51]
|
WELSCH R, MEDINA J, GIULIANO G, et al. Structural and Functional Characterization of the Phytoene Synthase Promoter from Arabidopsis thaliana[J]. Planta, 2003, 216(3):523-534.
Google Scholar
|
[52]
|
CUNNINGHAM F X, POGSON B, SUN Z, et al. Functional Analysis of the Beta and Epsilon Lycopene Cyclase Enzymes of Arabidopsis Reveals a Mechanism for Control of Cyclic Carotenoid Formation[J]. The Plant Cell, 1996, 8(9):1613-1626.
Google Scholar
|
[53]
|
PARK H, KREUNEN S S, CUTTRISS A J, et al. Identification of the Carotenoid Isomerase Provides Insight into Carotenoid Biosynthesis, Prolamellar Body Formation, and Photomorphogenesis[J]. The Plant Cell, 2002, 14(2):321-332.
Google Scholar
|
[54]
|
邓昌哲, 安飞飞, 李开绵, 等. 外源ABA及其抑制剂钨酸钠对木薯块根类胡萝卜素相关基因和蛋白的影响[J]. 生物技术通报, 2017, 33(11):76-83.
Google Scholar
|
[55]
|
邓昌哲, 秦于玲, 李开绵, 等. 外源ABA对木薯叶片β-胡萝卜素合成通路相关基因表达的影响[J]. 热带作物学报, 2017, 38(4):667-672.
Google Scholar
|
[56]
|
代红洋, 柏旭, 李晓岗, 等. 植物激素在三萜类化合物生物合成中的作用及调控机制研究进展[J]. 中草药, 2021, 52(20):6391-6402.
Google Scholar
|
[57]
|
孙丽超, 李淑英, 王凤忠, 等. 萜类化合物的合成生物学研究进展[J]. 生物技术通报, 2017, 33(1):64-75.
Google Scholar
|
[58]
|
施要强, 张海朋, 田静, 等. ABA处理对不同柑橘种质汁胞中挥发性物质的影响[J]. 华中农业大学学报, 2020, 39(1):10-17.
Google Scholar
|
[59]
|
张睿, 吴晓毅, 马宝伟, 等. 不同浓度脱落酸对雷公藤悬浮细胞萜类次生代谢产物累积的影响[J]. 世界中医药, 2018, 13(2):264-270.
Google Scholar
|
[60]
|
刘欣. 坛紫菜萜类合成途径关键酶基因GGPS和PDS分子克隆及表达分析[D]. 苏州:苏州大学, 2018.
Google Scholar
|
[61]
|
李圣彦. 玉米萜类合成酶基因TPS6的功能及表达调控研究[C]//中国农业科学院生物技术研究所. 绿色生态可持续发展与植物保护——中国植物保护学会第十二次全国会员代表大会暨学术年会论文集. 北京:中国农业科学院, 2018.
Google Scholar
|
[62]
|
WANGY C, YANGYY, CHID F. Transcriptome Analysis of Abscisic Acid Induced 20E Regulation in Suspension Ajugalobata Cells[J]. 3 Biotech, 2018, 8(8):320.
Google Scholar
|
[63]
|
FRICKE J, HILLEBRAND A, TWYMAN R M, et al. Abscisic Acid-Dependent Regulation of Small Rubber Particle Protein Gene Expression in Taraxacum brevicorniculatum is Mediated by TbbZIP1[J]. Plant & Cell Physiology, 2013, 54(4):448-464.
Google Scholar
|
[64]
|
曾燕燕. ABA及其受体蛋白PYL对姜花萜类花香物质代谢的调控研究[D]. 广州:华南农业大学, 2017.
Google Scholar
|
[65]
|
CAO YY, LIU L, MA K S, et al. The Jasmonate-Induced BHLH Gene SlJIG Functions in Terpene Biosynthesis and Resistance to Insects and Fungus[J]. Journal of Integrative Plant Biology, 2022, 64(5):1102-1115.
Google Scholar
|
[66]
|
NAKATA M, MITSUDA N, HERDE M, et al. A BHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in Arabidopsis[J]. The Plant Cell, 2013, 25(5):1641-1656.
Google Scholar
|
[67]
|
赵启明, 李范, 李萍. 花青素生物合成关键酶的研究进展[J]. 生物技术通报, 2012(12):25-32.
Google Scholar
|
[68]
|
张金容. 避雨栽培'红地球'葡萄活性物质变化和ABA对其原花青素调控研究[D]. 雅安:四川农业大学, 2016.
Google Scholar
|
[69]
|
胡冰. ABA调控荔枝果皮叶绿素降解和花色苷生物合成的分子机理研究[D]. 广州:华南农业大学, 2018.
Google Scholar
|
[70]
|
陈俊洁, 梅松, 胡彦如. 脱落酸激素诱导拟南芥幼苗中花青素的合成[J]. 广西植物, 2020, 40(8):1169-1180.
Google Scholar
|
[71]
|
LUO P, SHEN Y X, JIN S X, et al. Overexpression of Rosa rugosa Anthocyanidin Reductase Enhances Tobacco Tolerance to Abiotic Stress through Increased ROS Scavenging and Modulation of ABA Signaling[J]. Plant Science, 2016, 245:35-49.
Google Scholar
|
[72]
|
OH H D, YU D J, CHUNG S W, et al. Abscisic Acid Stimulates Anthocyanin Accumulation in 'Jersey' Highbush Blueberry Fruits during Ripening[J]. Food Chemistry, 2018, 244:403-407.
Google Scholar
|
[73]
|
GUTIERREZ N, TORRES A M. Characterization and Diagnostic Marker for TTG1 Regulating Tannin and Anthocyanin Biosynthesis in FabaBean[J]. Scientific Reports, 2019, 9:16174.
Google Scholar
|