Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 1 Issue 6
Article Contents

CUI Wen, BAI Xuesong, WANG Jian, et al. Research Progress of ABA Hormone Regulating Biosynthesis of Disease Resistance Related Plant Secondary Metabolites[J]. PLANT HEALTH AND MEDICINE, 2022, (6): 1-11. doi: 10.13718/j.cnki.zwyx.2022.06.001
Citation: CUI Wen, BAI Xuesong, WANG Jian, et al. Research Progress of ABA Hormone Regulating Biosynthesis of Disease Resistance Related Plant Secondary Metabolites[J]. PLANT HEALTH AND MEDICINE, 2022, (6): 1-11. doi: 10.13718/j.cnki.zwyx.2022.06.001

Research Progress of ABA Hormone Regulating Biosynthesis of Disease Resistance Related Plant Secondary Metabolites

More Information
  • Received Date: 14/08/2022
  • MSC: S432.2+3

  • The biosynthesis of plant secondary metabolites is closely related to plant hormones. ABA hormones can significantly increase biosynthesis of disease resistance related plant secondary metabolite. This article presents the biosynthesis of ABA hormones, emphasis on the ABA hormone regulating the plant growth and stress resistance, as well as the biosynthesis of secondary metabolites such as phenolic acids, flavonoids, terpenoids, and other plant disease resistance related compounds, also look ahead to research prospects. The article deeply reviews the biosynthesis of ABA hormones and the molecular mechanisms of ABA involved in the downstream regulation, which can optimize the secondary metabolic pathway with the development and utilization of genetic engineering technology to improve the production of secondary metabolites and enhance the plant disease resistance, and have broad application prospects in the development of new drugs, industrial and agricultural production.
  • 加载中
  • [1] 张瑜, 徐志超, 季爱加, 等. bZIP转录因子调控植物次生代谢产物生物合成的研究进展[J]. 植物科学学报, 2017, 35(1):128-137.

    Google Scholar

    [2] HAN S Y, KITAHATA N, SEKIMATA K, et al. A Novel Inhibitor of 9-Cis-Epoxycarotenoid Dioxygenase in Abscisic Acid Biosynthesis in Higher Plants[J]. Plant Physiology, 2004, 135(3):1574-1582.

    Google Scholar

    [3] HUANG Y, GUO Y M, LIU Y T, et al. 9-Cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice[J]. Frontiers in Plant Science, 2018, 9:162.

    Google Scholar

    [4] SEO M, PEETERS A J, KOIWAI H, et al. The Arabidopsis Aldehyde Oxidase 3(AAO3) Gene Product Catalyzes the Final Step in Abscisic Acid Biosynthesis in Leaves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(23):12908-12913.

    Google Scholar

    [5] KROCHKO J E, ABRAMS G D, LOEWEN M K, et al. (+)-Abscisic Acid 8'-Hydroxylase is a Cytochrome P450 Monooxygenase[J]. Plant Physiology, 1998, 118(3):849-860.

    Google Scholar

    [6] MARIN E, NUSSAUME L, QUESADA A, et al. Molecular Identification of Zeaxanthin Epoxidase of Nicotiana Plumbaginifolia, a Gene Involved in Abscisic Acid Biosynthesis and Corresponding to the ABA Locus of Arabidopsis thaliana[J]. The EMBO Journal, 1996, 15(10):2331-2342.

    Google Scholar

    [7] SCHWARTZ S H, TAN B C, GAGE D A, et al. Specific Oxidative Cleavage of Carotenoids by VP14 of Maize[J]. Science, 1997, 276(5320):1872-1874.

    Google Scholar

    [8] TAN B C, SCHWARTZ S H, ZEEVAART J A, et al. Genetic Control of Abscisic Acid Biosynthesis in Maize[J]. PNAS, 1997, 94(22):12235-12240.

    Google Scholar

    [9] OKAMOTO M, TANAKA Y, ABRAMS S R, et al. High Humidity Induces Abscisic Acid 8'-Hydroxylase in Stomata and Vasculature to Regulate Local and Systemic Abscisic Acid Responses in Arabidopsis[J]. Plant Physiology, 2009, 149(2):825-834.

    Google Scholar

    [10] KITAHATA N, SAITO S, MIYAZAWA Y, et al. Chemical Regulation of Abscisic Acid Catabolism in Plants by Cytochrome P450 Inhibitors[J]. Bioorganic & Medicinal Chemistry, 2005, 13(14):4491-4498.

    Google Scholar

    [11] KUROMORI T, MIYAJI T, YABUUCHI H, et al. ABC Transporter AtABCG25 is Involved in Abscisic Acid Transport and Responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2361-2366.

    Google Scholar

    [12] 姚依秀, 李玉林, 何艳军, 等. 西瓜NCED基因的鉴定及其对枯萎病和脱落酸的表达模式分析[J]. 分子植物育种, 2022, 20(5):1393-1405.

    Google Scholar

    [13] LI J, WANG X Q, WATSON M B, et al. Regulation of Abscisic Acid-Induced Stomatal Closure and Anion Channels by Guard Cell AAPK Kinase[J]. Science, 2000, 287(5451):300-303.

    Google Scholar

    [14] ARMSTRONG F, LEUNG J, GRABOV A, et al. Sensitivity to Abscisic Acid of Guard-Cell K+ Channels is Suppressed by Abi1-1, a Mutant Arabidopsis Gene Encoding a Putative Protein Phosphatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(21):9520-9524.

    Google Scholar

    [15] FUJII H, CHINNUSAMY V, RODRIGUES A, et al. In Vitro Reconstitution of an Abscisic Acid Signalling Pathway[J]. Nature, 2009, 462(7273):660-664.

    Google Scholar

    [16] KANG J, HWANG J U, LEE M, et al. PDR-Type ABC Transporter Mediates Cellular Uptake of the Phytohormone Abscisic Acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2355-2360.

    Google Scholar

    [17] JARZYNIAK K M, JASIN'SKI M. Membrane Transporters and Drought Resistance-a Complex Issue[J]. Frontiers in Plant Science, 2014, 5:687.

    Google Scholar

    [18] 江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展[J]. 江苏农业学报, 2007, 23(4):360-365.

    Google Scholar

    [19] FUJITA Y, YOSHIDA T, YAMAGUCHI-SHINOZAKI K. Pivotal Role of the AREB/ABF-SnRK2 Pathway in ABRE-Mediated Transcription in Response to Osmotic Stress in Plants[J]. Physiologia Plantarum, 2013, 147(1):15-27.

    Google Scholar

    [20] DITTRICH M, MUELLER H M, BAUER H, et al. The Role of Arabidopsis ABA Receptors from the PYR/PYL/RCAR Family in Stomatal Acclimation and Closure Signal Integration[J]. Nature Plants, 2019, 5(9):1002-1011.

    Google Scholar

    [21] PAN JJ, WANG H P, HU Y R, et al. Arabidopsis VQ18 and VQ26 Proteins Interact with ABI5 Transcription Factor to Negatively Modulate ABA Response during Seed Germination[J]. The Plant Journal:for Cell and Molecular Biology, 2018, 95(3):529-544.

    Google Scholar

    [22] CHEN K, LIG J, BRESSAN R A, et al. Abscisic Acid Dynamics, Signaling, and Functions in Plants[J]. Journal of Integrative Plant Biology, 2020, 62(1):25-54.

    Google Scholar

    [23] ARC E, SECHET J, CORBINEAU F, et al. ABA Crosstalk with Ethylene and Nitric Oxide in Seed Dormancy and Germination[J]. Frontiers in Plant Science, 2013, 4:63.

    Google Scholar

    [24] GONZALEZ-GUZMAN M, PIZZIO G A, ANTONI R, et al. Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid[J]. The Plant Cell, 2012, 24(6):2483-2496.

    Google Scholar

    [25] NAKASHIMA K, FUJITA Y, KANAMORI N, et al. Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy[J]. Plant &Cell Physiology, 2009, 50(7):1345-1363.

    Google Scholar

    [26] LIN Z, LI Y, WANG Y B, et al. Initiation and Amplification of SnRK2 Activation in Abscisic Acid Signaling[J]. Nature Communications, 2021, 12:2456.

    Google Scholar

    [27] HRABAK E M, CHAN C W M, GRIBSKOV M, et al. The Arabidopsis CDPK-SNRK Superfamily of Protein Kinases[J]. Plant Physiology, 2003, 132(2):666-680.

    Google Scholar

    [28] SCHWEIGHOFER A. Plant PP2C Phosphatases:Emerging Functions in Stress Signaling[J]. Trends in Plant Science, 2004, 9(5):236-243.

    Google Scholar

    [29] MÖNKE G, ALTSCHMIED L, TEWES A, et al. Seed-Specific Transcription Factors ABI3 and FUS3:Molecular Interaction with DNA[J]. Planta, 2004, 219(1):158-166.

    Google Scholar

    [30] REKHTER D, LVDKE D, DING Y L, et al. Isochorismate-Derived Biosynthesis of the Plant Stress Hormone Salicylic Acid[J]. Science, 2019, 365(6452):498-502.

    Google Scholar

    [31] SHI M. CRISPR/Cas9-Mediated Targeted Mutagenesis of bZIP2 in Salvia Miltiorrhiza Leads to Promoted Phenolic Acid Biosynthesis[J]. Industrial Crops and Products, 2021, 167:113560.

    Google Scholar

    [32] FU R, ZHANG P Y, JIN G, et al. Versatility in Acyltransferase Activity Completes Chicoric Acid Biosynthesis in Purple Coneflower[J]. Nature Communications, 2021, 12:1563.

    Google Scholar

    [33] MOGLIA A, ACQUADRO A, ELJOUNAIDI K, et al. Genome-Wide Identification of BAHD Acyltransferases and in Vivo Characterization of HQT-Like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke[J]. Frontiers in Plant Science, 2016, 7:1424.

    Google Scholar

    [34] 沈丽红, 任加惠, 金雯芳, 等. 一氧化氮信号在脱落酸诱导丹参酚酸类成分积累中的作用[J]. 生物工程学报, 2016, 32(2):222-230.

    Google Scholar

    [35] MA P D, LIUJ L, ZHANGC L, et al. Regulation of Water-Soluble Phenolic Acid Biosynthesis in Salviamiltiorrhiza Bunge[J]. Applied Biochemistry and Biotechnology, 2013, 170(6):1253-1262.

    Google Scholar

    [36] DENG C P, SHI M, FU R, et al. ABA-Responsive Transcription Factor bZIP1 is Involved in Modulating Biosynthesis of Phenolic Acids and Tanshinones in Salvia miltiorrhiza[J]. Journal of Experimental Botany, 2020, 71(19):5948-5962.

    Google Scholar

    [37] YAMAMOTOL Y, KOYAMA R, DE ASSIS A M, et al. Phenolic Compounds in Juice of "Isabel" Grape Treated with Abscisic Acid for Color Improvement[J]. BIO Web of Conferences, 2015, 5:01014.

    Google Scholar

    [38] 任广喜. 甘草酸合成调控网络中ABA关键功能基因NCEDs变异对甘草酸合成的影响研究[D]. 北京:北京中医药大学, 2016.

    Google Scholar

    [39] BEFFA R S, HOFER R M, THOMAS M, et al. Decreased Susceptibility to Viral Disease of[Beta]-1, 3-Glucanase-Deficient Plants Generated byAntisenseTransformation[J]. The Plant Cell, 1996, 8(6):1001-1011.

    Google Scholar

    [40] WU J, WANGX C, LIU Y, et al. Flavone Synthases from Lonicera japonica and L. macranthoides Reveal Differential Flavone Accumulation[J]. Scientific Reports, 2016, 6:19245.

    Google Scholar

    [41] 罗庆华, 刘昌敏, 黄凯丰. 水芹内源激素含量及其与产量和黄酮的关系初探[J]. 分子植物育种, 2019, 17(9):3040-3045.

    Google Scholar

    [42] 吴琼. ABA-乙烯互作调控樱桃番茄果实成熟的效应与机理研究[D]. 杭州:浙江大学, 2019.

    Google Scholar

    [43] 吴觉天. 采后ABA和BTH处理对马铃薯块茎快速愈伤的作用及部分机理[D]. 兰州:甘肃农业大学, 2014.

    Google Scholar

    [44] SU L T, LV A M, WEN W W, et al. MsMYB741 is Involved in Alfalfa Resistance to Aluminum Stress by Regulating Flavonoid Biosynthesis[J]. The Plant Journal:for Cell and Molecular Biology, 2022, 112(3):756-771.

    Google Scholar

    [45] 伍小方, 高国应, 左倩, 等. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究[J]. 植物遗传资源学报, 2020, 21(5):1270-1278.

    Google Scholar

    [46] PENG X J, LIU H, CHEN P, et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage[J]. Molecular Plant, 2019, 12(5):661-677.

    Google Scholar

    [47] LIU C, YU H S, RAO X L, et al. Abscisic Acid Regulates Secondary Cell-Wall Formation and Lignin Deposition in Arabidopsis thaliana through Phosphorylation of NST1[J]. ProceedingsoftheNational Academy of Sciences of the United States of America, 2021, 118(5):e2010911118.

    Google Scholar

    [48] WODZICKI T J, WODZICKI A B. Seasonal Abscisic Acid Accumulation in Stem Cambial Region of Pinus silvestris, and Its Contribution to the Hypothesis of a Late-Wood Control System in Conifers[J]. Physiologia Plantarum, 1980, 48(3):443-447.

    Google Scholar

    [49] RODRÍGUEZ-CONCEPCIÓN M, BORONAT A. Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. aMetabolic Milestone Achieved through Genomics[J]. Plant Physiology, 2002, 130(3):1079-1089.

    Google Scholar

    [50] AHARONI A, O'CONNELL A P. Gene Expression Analysis of Strawberry Achene and Receptacle Maturation using DNA Microarrays[J]. Journal of Experimental Botany, 2002, 53:2073-2087.

    Google Scholar

    [51] WELSCH R, MEDINA J, GIULIANO G, et al. Structural and Functional Characterization of the Phytoene Synthase Promoter from Arabidopsis thaliana[J]. Planta, 2003, 216(3):523-534.

    Google Scholar

    [52] CUNNINGHAM F X, POGSON B, SUN Z, et al. Functional Analysis of the Beta and Epsilon Lycopene Cyclase Enzymes of Arabidopsis Reveals a Mechanism for Control of Cyclic Carotenoid Formation[J]. The Plant Cell, 1996, 8(9):1613-1626.

    Google Scholar

    [53] PARK H, KREUNEN S S, CUTTRISS A J, et al. Identification of the Carotenoid Isomerase Provides Insight into Carotenoid Biosynthesis, Prolamellar Body Formation, and Photomorphogenesis[J]. The Plant Cell, 2002, 14(2):321-332.

    Google Scholar

    [54] 邓昌哲, 安飞飞, 李开绵, 等. 外源ABA及其抑制剂钨酸钠对木薯块根类胡萝卜素相关基因和蛋白的影响[J]. 生物技术通报, 2017, 33(11):76-83.

    Google Scholar

    [55] 邓昌哲, 秦于玲, 李开绵, 等. 外源ABA对木薯叶片β-胡萝卜素合成通路相关基因表达的影响[J]. 热带作物学报, 2017, 38(4):667-672.

    Google Scholar

    [56] 代红洋, 柏旭, 李晓岗, 等. 植物激素在三萜类化合物生物合成中的作用及调控机制研究进展[J]. 中草药, 2021, 52(20):6391-6402.

    Google Scholar

    [57] 孙丽超, 李淑英, 王凤忠, 等. 萜类化合物的合成生物学研究进展[J]. 生物技术通报, 2017, 33(1):64-75.

    Google Scholar

    [58] 施要强, 张海朋, 田静, 等. ABA处理对不同柑橘种质汁胞中挥发性物质的影响[J]. 华中农业大学学报, 2020, 39(1):10-17.

    Google Scholar

    [59] 张睿, 吴晓毅, 马宝伟, 等. 不同浓度脱落酸对雷公藤悬浮细胞萜类次生代谢产物累积的影响[J]. 世界中医药, 2018, 13(2):264-270.

    Google Scholar

    [60] 刘欣. 坛紫菜萜类合成途径关键酶基因GGPS和PDS分子克隆及表达分析[D]. 苏州:苏州大学, 2018.

    Google Scholar

    [61] 李圣彦. 玉米萜类合成酶基因TPS6的功能及表达调控研究[C]//中国农业科学院生物技术研究所. 绿色生态可持续发展与植物保护——中国植物保护学会第十二次全国会员代表大会暨学术年会论文集. 北京:中国农业科学院, 2018.

    Google Scholar

    [62] WANGY C, YANGYY, CHID F. Transcriptome Analysis of Abscisic Acid Induced 20E Regulation in Suspension Ajugalobata Cells[J]. 3 Biotech, 2018, 8(8):320.

    Google Scholar

    [63] FRICKE J, HILLEBRAND A, TWYMAN R M, et al. Abscisic Acid-Dependent Regulation of Small Rubber Particle Protein Gene Expression in Taraxacum brevicorniculatum is Mediated by TbbZIP1[J]. Plant & Cell Physiology, 2013, 54(4):448-464.

    Google Scholar

    [64] 曾燕燕. ABA及其受体蛋白PYL对姜花萜类花香物质代谢的调控研究[D]. 广州:华南农业大学, 2017.

    Google Scholar

    [65] CAO YY, LIU L, MA K S, et al. The Jasmonate-Induced BHLH Gene SlJIG Functions in Terpene Biosynthesis and Resistance to Insects and Fungus[J]. Journal of Integrative Plant Biology, 2022, 64(5):1102-1115.

    Google Scholar

    [66] NAKATA M, MITSUDA N, HERDE M, et al. A BHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in Arabidopsis[J]. The Plant Cell, 2013, 25(5):1641-1656.

    Google Scholar

    [67] 赵启明, 李范, 李萍. 花青素生物合成关键酶的研究进展[J]. 生物技术通报, 2012(12):25-32.

    Google Scholar

    [68] 张金容. 避雨栽培'红地球'葡萄活性物质变化和ABA对其原花青素调控研究[D]. 雅安:四川农业大学, 2016.

    Google Scholar

    [69] 胡冰. ABA调控荔枝果皮叶绿素降解和花色苷生物合成的分子机理研究[D]. 广州:华南农业大学, 2018.

    Google Scholar

    [70] 陈俊洁, 梅松, 胡彦如. 脱落酸激素诱导拟南芥幼苗中花青素的合成[J]. 广西植物, 2020, 40(8):1169-1180.

    Google Scholar

    [71] LUO P, SHEN Y X, JIN S X, et al. Overexpression of Rosa rugosa Anthocyanidin Reductase Enhances Tobacco Tolerance to Abiotic Stress through Increased ROS Scavenging and Modulation of ABA Signaling[J]. Plant Science, 2016, 245:35-49.

    Google Scholar

    [72] OH H D, YU D J, CHUNG S W, et al. Abscisic Acid Stimulates Anthocyanin Accumulation in 'Jersey' Highbush Blueberry Fruits during Ripening[J]. Food Chemistry, 2018, 244:403-407.

    Google Scholar

    [73] GUTIERREZ N, TORRES A M. Characterization and Diagnostic Marker for TTG1 Regulating Tannin and Anthocyanin Biosynthesis in FabaBean[J]. Scientific Reports, 2019, 9:16174.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1369) PDF downloads(750) Cited by(0)

Access History

Other Articles By Authors

Research Progress of ABA Hormone Regulating Biosynthesis of Disease Resistance Related Plant Secondary Metabolites

Abstract: The biosynthesis of plant secondary metabolites is closely related to plant hormones. ABA hormones can significantly increase biosynthesis of disease resistance related plant secondary metabolite. This article presents the biosynthesis of ABA hormones, emphasis on the ABA hormone regulating the plant growth and stress resistance, as well as the biosynthesis of secondary metabolites such as phenolic acids, flavonoids, terpenoids, and other plant disease resistance related compounds, also look ahead to research prospects. The article deeply reviews the biosynthesis of ABA hormones and the molecular mechanisms of ABA involved in the downstream regulation, which can optimize the secondary metabolic pathway with the development and utilization of genetic engineering technology to improve the production of secondary metabolites and enhance the plant disease resistance, and have broad application prospects in the development of new drugs, industrial and agricultural production.

Reference (73)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return