[1]
|
FERREIRA C S S, SEIFOLLAHI-AGHMIUNI S, DESTOUNI G. Soil Degradation in the European Mediterranean Region:Processes, Status and Consequences[J]. Science of the Total Environment, 2022, 805:150106.
Google Scholar
|
[2]
|
周岩, 武继承. 土壤改良剂的研究现状、问题与展望[J]. 河南农业科学, 2010, 39(8):152-155.
Google Scholar
|
[3]
|
XU Z, LU Z, ZHANG L. Red Mud Based Passivator Reduced Cd Accumulation in Edible Amaranth by Influencing Root Organic Matter Metabolism and Soil Aggregate Distribution[J]. Environmental Pollution, 2021, 275:116543.
Google Scholar
|
[4]
|
XUE S, SHI L, WU C. Cadmium, Lead, and Arsenic Contamination in Paddy Soils of a Mining Area and Their Exposure Effects on Human HEPG2 and Keratinocyte Cell-Lines[J]. Environmental Research, 2017, 156:23-30.
Google Scholar
|
[5]
|
QIN G, NIU Z, YU J. Soil Heavy Metal Pollution and Food Safety in China:Effects, Sources and Removing Technology[J]. Chemosphere, 2021, 267:129205.
Google Scholar
|
[6]
|
GUO G L, ZHOU Q X, MA L Q. Availability and Assessment of Fixing Additives for the in Situ Remediation of Heavy Metal Contaminated Soils:aReview[J]. Environmental Monitoring and Assessment, 2006, 116(1):513-528.
Google Scholar
|
[7]
|
SHAH M T, BEGUM S, KHAN S. Pedo and Biogeochemical Studies of Mafic and Ultramfic Rocks in the Mingora and Kabal Areas, Swat, Pakistan[J]. Environmental Earth Sciences, 2010, 60(5):1091-1102.
Google Scholar
|
[8]
|
赵国强. 稻田系统中镉来源研究进展[J]. 绿色科技, 2020(18):62-63, 66.
Google Scholar
|
[9]
|
郭超, 文宇博, 杨忠芳, 等. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究[J]. 南京大学学报(自然科学), 2019, 55(4):678-687.
Google Scholar
|
[10]
|
CHARY N S, KAMALM C T, RAJD S S. Assessing Risk of Heavy Metals from Consuming Food Grown on Sewage Irrigated Soils and Food Chain Transfer[J]. Ecotoxicology and Environmental Safety, 2008, 69(3):513-524.
Google Scholar
|
[11]
|
LAMB D T, MING H, MEGHARAJ M, etal. Heavy Metal (Cu, Zn, Cd and Pb) Partitioning and Bioaccessibility in Uncontaminated and Long-Term Contaminated Soils[J]. Journal of Hazardous Materials, 2009, 171(1-3):1150-1158.
Google Scholar
|
[12]
|
ARTHUR E, CREWS H, MORGAN C. Optimizing Plant Genetic Strategiesfor Minimizing Environmental Contaminationinthe Food Chain[J]. International Journal of Phytoremediation, 2000, 2(1):1-21.
Google Scholar
|
[13]
|
许紫峻, 汪溪远, 师庆东, 等. 准东煤矿区土壤镉污染风险评价及敏感性分析[J]. 生态毒理学报, 2018, 13(2):159-170.
Google Scholar
|
[14]
|
ROY M, MCDONALD L M. Metal Uptake in Plants and Health Risk Assessments in Metal-Contaminated Smelter Soils[J]. Land Degradation & Development, 2015, 26(8):785-792.
Google Scholar
|
[15]
|
袁旭峰. 农田土壤中镉的来源及水稻控镉生产技术[J]. 基层农技推广, 2021, 9(3):95-97.
Google Scholar
|
[16]
|
刘荣乐, 李书田, 王秀斌, 等. 我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J]. 农业环境科学学报, 2005, 24(2):392-397.
Google Scholar
|
[17]
|
刘育红. 土壤镉污染的产生及治理方法[J]. 青海大学学报(自然科学版), 2006, 24(2):75-79.
Google Scholar
|
[18]
|
黄凤, 宋磊, 周浩. 浅谈土壤镉污染的来源及存在形态[J]. 价值工程, 2020, 39(29):225-226.
Google Scholar
|
[19]
|
王亚平, 鲍征宇, 侯书恩. 尾矿库周围土壤中重金属存在形态特征研究[J]. 岩矿测试, 2000, 19(1):7-13.
Google Scholar
|
[20]
|
王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8):728-734.
Google Scholar
|
[21]
|
李洪达, 李艳, 周薇, 等. 稻壳生物炭对矿区重金属复合污染土壤中Cd、Zn形态转化的影响[J]. 农业环境科学学报, 2018, 37(9):1856-1865.
Google Scholar
|
[22]
|
邓红梅, 陈永亨, 常向阳. 腐殖酸对铊污染土壤中铊形态和分布的影响[J]. 生态环境学报, 2009, 18(3):891-894.
Google Scholar
|
[23]
|
李娜, 夏瑜, 何绪文, 等. 基于Tessier法的土壤中不同形态镉的转化及其影响因素研究进展[J]. 土壤通报, 2021, 52(6):1505-1512.
Google Scholar
|
[24]
|
TESSIER A, CAMPBELL P G C, BISSON M. Sequential Extraction Procedureforthe Speciationof Particulate Trace Metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
Google Scholar
|
[25]
|
ZHAO K L, ZHANG W W, ZHOU L, et al. Modeling Transfer of Heavy Metals in Soil-Rice System and Their Risk Assessment in Paddy Fields[J]. Environmental Earth Sciences, 2009, 59(3):519-527.
Google Scholar
|
[26]
|
HUSSAIN B, ASHRAF M N, SHAFEEQ U R. Cadmium Stress in Paddy Fields:Effects of Soil Conditions and Remediation Strategies[J]. Science of the Total Environment, 2021, 754:142188.
Google Scholar
|
[27]
|
MAO C P, SONG Y, CHEN L. Human Health Risks of Heavy Metals in Paddy Rice Based on Transfer Characteristics of Heavy Metals from Soil to Rice[J]. CATENA, 2019, 175:339-348.
Google Scholar
|
[28]
|
和君强, 贺前锋, 刘代欢,等. 土壤镉食品卫生安全阈值影响因素及预测模型——以长沙某地水稻土为例[J]. 土壤学报, 2017, 54(5):1181-1194.
Google Scholar
|
[29]
|
林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711.
Google Scholar
|
[30]
|
喻华, 秦鱼生, 陈琨, 等. 水稻土镉形态分布特征及其生物效应研究[J]. 西南农业学报, 2017, 30(2):452-457.
Google Scholar
|
[31]
|
毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10):1669-1676.
Google Scholar
|
[32]
|
刘莉, 钱琼秋. 影响作物对镉吸收的因素分析及土壤镉污染的防治对策[J]. 浙江农业学报, 2005, 17(2):111-116.
Google Scholar
|
[33]
|
HU Y A, CHENG H, TAO S. The Challenges and Solutions for Cadmium-Contaminated Rice in China:a Critical Review[J]. Environment International, 2016, 92-93:515-532.
Google Scholar
|
[34]
|
葛颖, 马进川, 邹平, 等. 水分管理对镉轻度污染农田水稻镉积累的影响[J]. 灌溉排水学报, 2021, 40(3):79-86.
Google Scholar
|
[35]
|
宋杨. 冻融作用下外源有机质对东北耕地土壤中重金属Pb和Cd赋存形态的影响[D]. 长春:吉林大学, 2012.
Google Scholar
|
[36]
|
张静静, 朱爽阁, 朱利楠, 等. 不同钝化剂对微碱性土壤镉、镍形态及小麦吸收的影响[J]. 环境科学, 2020, 41(1):460-468.
Google Scholar
|
[37]
|
PARK J H, LAMB D, PANEERSELVAM P. Role of Organic Amendments on Enhanced Bioremediation of Heavy Metal(Loid) Contaminated Soils[J]. Journal of Hazardous Materials, 2011, 185(2-3):549-574.
Google Scholar
|
[38]
|
欧阳娜, 李云龙. 牡蛎壳吸附材料研究进展[J]. 黎明职业大学学报, 2019(2):86-91.
Google Scholar
|
[39]
|
HOUBEN D, PIRCAR J, SONNET P. Heavy Metal Immobilization by Cost-Effective Amendments in a Contaminated Soil:Effects on Metal Leaching and Phytoavailability[J]. Journal of Geochemical Exploration, 2012, 123:87-94.
Google Scholar
|
[40]
|
刘艺芸, 陈志国, 王秀梅, 等. 蓄电池拆解区铅、镉复合污染农田土壤钝化修复[J]. 环境化学, 2021, 40(4):1138-1146.
Google Scholar
|
[41]
|
张宇鹏, 谭笑潇, 陈晓远, 等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响[J]. 生态环境学报, 2020, 29(2):388-393.
Google Scholar
|
[42]
|
DE VARENNES A, QUEDA C. Application of an Insoluble Polyacrylate Polymer to Copper-Contaminated Soil Enhances Plant Growth and Soil Quality[J]. Soil Use and Management, 2005, 21(4):410-414.
Google Scholar
|
[43]
|
YANG X, LIU J J, MCGROUTHER K, etal. Effect of Biochar on the Extractability of Heavy Metals (Cd, Cu, Pb, and Zn) and Enzyme Activity in Soil[J]. Environmental Science and Pollution Research International, 2016, 23(2):974-984.
Google Scholar
|
[44]
|
SARFRAZ R, SHAKOOR A, ABDULLAH M, et al. Impact of Integrated Application of Biochar and Nitrogen Fertilizers on Maize Growth and Nitrogen Recovery in Alkaline Calcareous Soil[J]. Soil Science and Plant Nutrition, 2017, 63(5):488-498.
Google Scholar
|
[45]
|
唐朝春, 朱蓓, 许荣明, 等. 金属基吸附剂除砷技术研究进展[J]. 环境科学与技术, 2020, 43(10):221-228.
Google Scholar
|
[46]
|
常春英, 曹浩轩, 陶亮, 等. 固化/稳定化修复后土壤重金属稳定性及再活化研究进展[J]. 土壤, 2021, 53(4):682-691.
Google Scholar
|
[47]
|
黄占斌, 赵鹏, 王颖南, 等. 土壤重金属固化稳定化材料研发及其应用基础研究进展[J]. 农业资源与环境学报, 2022, 39(3):435-445.
Google Scholar
|
[48]
|
曹英兰, 陈丽娜, 张金丽, 等. 牡蛎壳粉对酸性土壤的修复及其对镉的钝化作用研究[J]. 环境科学与技术, 2016, 39(1):178-182.
Google Scholar
|
[49]
|
王璨, 张煜行, 何明靖, 等. 不同土壤调理剂对土壤镉和邻-苯二甲酸酯迁移转化影响[J]. 环境科学, 2021, 42(8):4024-4036.
Google Scholar
|
[50]
|
HAMID Y, TANG L, HUSSAIN B. Efficiency of Lime, Biochar, Fe Containing Biochar and Composite Amendments for Cd and Pb Immobilization in a Co-Contaminated Alluvial Soil[J]. Environmental Pollution, 2020, 257:113609.
Google Scholar
|
[51]
|
魏玮, 李平, 郎漫. 不同结构改良剂对铜镉污染土壤水稻生长和重金属吸收的影响[J]. 环境科学, 2021, 42(9):4462-4470.
Google Scholar
|
[52]
|
索琳娜, 马杰, 刘宝存, 等. 土壤调理剂应用现状及施用风险研究[J]. 农业环境科学学报, 2021, 40(6):1141-1149.
Google Scholar
|