Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 2 Issue 6
Article Contents

MA Yanan, LI Jiping, ZHENG Guo, et al. Determination of Host Range of Coniella fragariae and Indoor Bioagent Screening[J]. PLANT HEALTH AND MEDICINE, 2023, (6): 28-35. doi: 10.13718/j.cnki.zwyx.2023.06.004
Citation: MA Yanan, LI Jiping, ZHENG Guo, et al. Determination of Host Range of Coniella fragariae and Indoor Bioagent Screening[J]. PLANT HEALTH AND MEDICINE, 2023, (6): 28-35. doi: 10.13718/j.cnki.zwyx.2023.06.004

Determination of Host Range of Coniella fragariae and Indoor Bioagent Screening

More Information
  • Received Date: 31/08/2021
  • MSC: S432

  • In order to clarify the host range of Coniella fragariae, a pathogen of root rot disease of Paeonia veitchii Lynch, and screen effective biocides, the pathogenicity test was conducted on 12 species of plants, including P. veitchii, cherry and peony by leaf stabbing inoculation method, and the antifungal effect of 8 biological fungicides on C. fragariae was determined by mycelial growth rate. The results showed that the pathogen can infect the leaves of P. veitchii, cherry, peony, rose, apple, pomegranate and walnut, but could not infect the leaves of pear, hawthorn, bamboo, yellow poplar and holly. The inhibitory effect of 0.3% eugenol on C. fragariae was the best with only 0.130 5 mg/L of EC50, and followed by 3% Zhongshengmycin with 4.225 6 mg/L of EC50. The antifungal effect of 8% ningnanmycin, 6% kasugamycin, 4% pyrimidine nucleoside antimicrobials, 10% polycxins and 500 million Paenibacillus polymyxa was poor, with EC50 value of 63.586 8 mg/L, 72.167 3 mg/L, 293.900 3 mg/L, 360.950 0 mg/L and 405.708 1 mg/L, respectively. The inhibitory effect of 24% Jinggangmycin on root rot of P. veitchii was the worst, and the inhibitory effect was not obvious. The results of this study provide theoretical basis for the diagnosis and control of P. veitchii root rot in the field.
  • 加载中
  • [1] 张石凯, 曹永兵. 赤芍的药理作用研究进展[J]. 药学实践杂志, 2021, 39(2):97-101.

    Google Scholar

    [2] 焦姣姣, 王雅琪, 熊优, 等. 2015年版《中国药典》一部含挥发油类中药的分类及其质量影响因素分析[J]. 中国实验方剂学杂志, 2019, 25(9):197-206.

    Google Scholar

    [3] LIN M Y, CHIANG S Y, LI Y Z, et al. Anti-Tumor Effect of Radix Paeoniae Rubra Extract on Mice Bladder Tumors Using Intravesical Therapy [J]. Oncology Letters, 2016, 12(2):904-910.

    Google Scholar

    [4] 张中义. 植物病原真菌学[M]. 成都:四川科学技术出版社, 1988.

    Google Scholar

    [5] CHETHANA K W T, ZHOU Y, ZHANG W, et al. Coniella Vitis Sp. Nov. is the Common Pathogen of White Rot in Chinese Vineyards [J]. Plant Disease, 2017, 101(12):2123-2136.

    Google Scholar

    [6] 李雨龙, 杨叶, 韦诚, 等. 海南飞机草病原真菌鉴定、致病力测定及其寄主范围分析[J]. 热带作物学报, 2016, 37(1):177-182.

    Google Scholar

    [7] 黄奕蔓, 白津铭, 朱文倩, 等. 鸡蛋花鞘锈菌重寄生真菌的种类鉴定及其寄主范围测定[J]. 广西科学, 2022, 29(2):384-392.

    Google Scholar

    [8] 朱俐遐, 刘琼, 黄艳, 等. 不同生物杀菌剂对番茄晚疫病的防效试验[J]. 长江蔬菜, 2018(14):68-70.

    Google Scholar

    [9] GISI U, CHIN K M, KNAPOVA G, et al. Recent Developments in Elucidating Modes of Resistance to Phenylamide, DMI and Strobilurin Fungicides [J]. Crop Protection, 2000, 19(8-10):863-872.

    Google Scholar

    [10] BENIGNI M, BOMPEIX G. Post Harvest Control of Phytophthora Cryptogea of Witloof Chicory with Different Fungicides and Possible Occurrence of Resistant Strains [J]. Crop Protection, 2006, 25(4):350-355.

    Google Scholar

    [11] 周文静. 海南大棚西瓜主要病原真菌鉴定及化学防治初步研究[D]. 海口:海南大学, 2012.

    Google Scholar

    [12] 陈宏州, 狄华涛, 吉沐祥, 等. 水稻纹枯病菌对啶酰菌胺的敏感性测定[J]. 江西农业学报, 2011, 23(5):97-99.

    Google Scholar

    [13] 寸海春, 何鹏搏, 何鹏飞, 等. 高山杜鹃褐斑病病原学研究[J]. 菌物学报, 2023, 42(3):707-718.

    Google Scholar

    [14] CROUS P W, GIRALDO A, HAWKSWORTH D L, et al. The Genera of Fungi:Fixing the Application of Type Species of Generic Names [J]. IMA Fungus, 2014, 5(1):141-160.

    Google Scholar

    [15] SWOFFORD D L, SULLIVAN J. Phylogeny Inference Based on Parsimony and other Methods Using PAUP [M]//The Phylogenetic Handbook. Cambridge:Cambridge University Press, 2009:267-312.

    Google Scholar

    [16] MIRANDA B E C, BARRETO R W, CROUS P W, et al. Pilidiella tibouchinae Sp. Nov. Associated with Foliage Blight of Tibouchina granulosa (quaresmeira) in Brazil [J]. IMA Fungus, 2012, 3(1):1-7.

    Google Scholar

    [17] 马娅楠, 李继平, 郑果, 等. 赤芍根腐病病原菌鉴定及生物学特性[J]. 西北农业学报, 2023, 32(9):1486-1494.

    Google Scholar

    [18] 郑果, 惠娜娜, 聂江山, 等. 5种生物杀菌剂拌种防治马铃薯黑痣病的效果[J]. 中国植保导刊, 2019, 39(12):73-75.

    Google Scholar

    [19] 唐韵. 我国生物农药发展现状与选用指南[J]. 农药市场信息, 2014(6):3.

    Google Scholar

    [20] SRIVASTAVA A K, ALI W, SINGH R, et al. RETRACTED:Mancozeb-Induced Genotoxicity and Apoptosis in Cultured Human Lymphocytes [J]. Life Sciences, 2012, 90(21-22):815-824.

    Google Scholar

    [21] 丁伟, 周红. 植物医学的新概念——精准用药[J]. 植物医生, 2019, 32(4):1-8.

    Google Scholar

    [22] 陈全助, 叶小真, 吴松, 等. 闽楠叶斑病化学杀菌剂与抑菌植物室内筛选[J]. 福建林业科技, 2020, 47(3):40-44, 109.

    Google Scholar

    [23] 周洪妹, 李彩菊, 张会永, 等. 丁子香酚对绿豆叶斑病的田间防治效果[J]. 农业科技通讯, 2021(4):102-105.

    Google Scholar

    [24] 兰成忠, 李本金, 赵健, 等. 植物源杀菌剂丁子香酚对辣椒疫病的防治效果[J]. 长江蔬菜, 2011(24):55-56.

    Google Scholar

    [25] 杨泓威, 易图永, 雷颖, 等. 丁子香酚对黄瓜疫霉菌的室内毒力测定[J]. 湖南农业科学, 2012(5):68-70.

    Google Scholar

    [26] 饶孝武, 谷勇, 李维群, 等. 3%丁子香酚防治马铃薯晚疫病试验初报[J]. 湖北植保, 2014(5):7-8, 4.

    Google Scholar

    [27] 杨帅, 王文重, 魏琪, 等. 植物源农药丁子香酚与苦参碱对两种马铃薯主要病害的毒力测定及评价[J]. 黑龙江农业科学, 2021(11):35-38.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(420) PDF downloads(108) Cited by(0)

Access History

Determination of Host Range of Coniella fragariae and Indoor Bioagent Screening

Abstract: In order to clarify the host range of Coniella fragariae, a pathogen of root rot disease of Paeonia veitchii Lynch, and screen effective biocides, the pathogenicity test was conducted on 12 species of plants, including P. veitchii, cherry and peony by leaf stabbing inoculation method, and the antifungal effect of 8 biological fungicides on C. fragariae was determined by mycelial growth rate. The results showed that the pathogen can infect the leaves of P. veitchii, cherry, peony, rose, apple, pomegranate and walnut, but could not infect the leaves of pear, hawthorn, bamboo, yellow poplar and holly. The inhibitory effect of 0.3% eugenol on C. fragariae was the best with only 0.130 5 mg/L of EC50, and followed by 3% Zhongshengmycin with 4.225 6 mg/L of EC50. The antifungal effect of 8% ningnanmycin, 6% kasugamycin, 4% pyrimidine nucleoside antimicrobials, 10% polycxins and 500 million Paenibacillus polymyxa was poor, with EC50 value of 63.586 8 mg/L, 72.167 3 mg/L, 293.900 3 mg/L, 360.950 0 mg/L and 405.708 1 mg/L, respectively. The inhibitory effect of 24% Jinggangmycin on root rot of P. veitchii was the worst, and the inhibitory effect was not obvious. The results of this study provide theoretical basis for the diagnosis and control of P. veitchii root rot in the field.

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return