Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 3 Issue 6
Article Contents

LIU Huidi, WANG Zhihui, TIAN Xiaowei. The Role of Photosynthesis in Plant-Pathogen Interactions[J]. PLANT HEALTH AND MEDICINE, 2024, 3(6): 32-41. doi: 10.13718/j.cnki.zwyx.2024.06.004
Citation: LIU Huidi, WANG Zhihui, TIAN Xiaowei. The Role of Photosynthesis in Plant-Pathogen Interactions[J]. PLANT HEALTH AND MEDICINE, 2024, 3(6): 32-41. doi: 10.13718/j.cnki.zwyx.2024.06.004

The Role of Photosynthesis in Plant-Pathogen Interactions

More Information
  • Corresponding author: TIAN Xiaowei
  • Received Date: 14/04/2024
    Available Online: 25/12/2024
  • MSC: S432.44;S476

  • Throughout their growth cycles, plants face challenges from a variety of pathogens. To address these challenges, plants mobilize defense responses via their innate immune systems to counteract pathogen infections. Photosynthesis, as a crucial component in plants' defense against pathogenic microbial infections, not only provides essential energy and metabolites to support plant defense responses but also enhances plant resistance through various mechanisms such as signal transduction and gene expression regulation, ultimately influencing crop yield and quality. Comprehensive understanding of the effects of photosynthesis on plant-pathogen interactions is essential for prevention and control of disease and improving crop yield and quality. This paper comprehensively analyzes the effects of pathogen stress on the tissue structure, physiological, and biochemical processes associated with plant photosynthesis. This paper also briefly summarizes the factors influencing the photosynthesis, and the role of photosynthesis in disease prediction, also the linkage between photosynthesis and plant immunity, thereby offering a foundational reference for further research in plant photosynthesis under pathogen stress.

  • 加载中
  • [1] GHOSH P, ROYCHOUDHURY A. Molecular Basis of Salicylic Acid-Phytohormone Crosstalk in Regulating Stress Tolerance in Plants[J]. Brazilian Journal of Botany, 2024, 47(3): 735-750. doi: 10.1007/s40415-024-00983-3

    CrossRef Google Scholar

    [2] MARQUES J P R, HOY J W, APPEZZATO-DA-GLÓRIA B, et al. Sugarcane Cell Wall-Associated Defense Responses to Infection by Sporisorium scitamineum[J]. Frontiers in Plant Science, 2018(9): 698.

    Google Scholar

    [3] DE CONINCK B, TIMMERMANS P, VOS C, et al. What Lies Beneath: Belowground Defense Strategies in Plants[J]. Trends in Plant Science, 2015, 20(2): 91-101. doi: 10.1016/j.tplants.2014.09.007

    CrossRef Google Scholar

    [4] HENNIG L. Plant Gene Regulation in Response to Abiotic Stress[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 85. doi: 10.1016/j.bbagrm.2012.01.005

    CrossRef Google Scholar

    [5] FRAIRE-VELAZQUEZ S, EMMANUEL V. Abiotic Stress in Plants and Metabolic Responses[M]//Abiotic Stress-Plant Responses and Applications in Agriculture. InTech, 2013.

    Google Scholar

    [6] PANDEY P, RAMEGOWDA V, SENTHIL-KUMAR M. Shared and Unique Responses of Plants to Multiple Individual Stresses and Stress Combinations: Physiological and Molecular Mechanisms[J]. Frontiers in Plant Science, 2015(6): 723.

    Google Scholar

    [7] QU A L, DING Y F, JIANG Q, et al. Molecular Mechanisms of the Plant Heat Stress Response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207. doi: 10.1016/j.bbrc.2013.01.104

    CrossRef Google Scholar

    [8] 李昕洋. 瘤黑粉菌侵染对玉米苗期叶片组织细胞及光合特性的影响[D]. 沈阳: 沈阳农业大学, 2022.

    Google Scholar

    [9] ZHANG B J, LIU X, SUN Y R, et al. Sclerospora graminicola Suppresses Plant Defense Responses by Disrupting Chlorophyll Biosynthesis and Photosynthesis in Foxtail Millet[J]. Frontiers in Plant Science, 2022(13): 928040.

    Google Scholar

    [10] GHOSE L, NEELA F A, CHAKRAVORT T C, et al. Incidence of Leaf Blight Disease of Mulberry Plant and Assessment of Changes in Amino Acids and Photosynthetic Pigments of Infected Leaf[J]. Plant Pathology Journal, 2010, 9(3): 140-143. doi: 10.3923/ppj.2010.140.143

    CrossRef Google Scholar

    [11] KUŹNIAK E, KOPCZEWSKI T. The Chloroplast Reactive Oxygen Species-Redox System in Plant Immunity and Disease[J]. Frontiers in Plant Science, 2020(11): 572686.

    Google Scholar

    [12] YANG H, LUO P G. Changes in Photosynthesis could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens[J]. International Journal of Molecular Sciences, 2021, 22(16): 8865. doi: 10.3390/ijms22168865

    CrossRef Google Scholar

    [13] GAGO J, DALOSO D M, CARRIQUÍ M, et al. Mesophyll Conductance: The Leaf Corridors for Photosynthesis[J]. Biochemical Society Transactions, 2020, 48(2): 429-439. doi: 10.1042/BST20190312

    CrossRef Google Scholar

    [14] DE SOUZA MARQUES M M, VITORINO L C, ROSA M, et al. Leaf Physiology and Histopathology of the Interaction between the Opportunistic Phytopathogen Fusarium Equiseti and Gossypium Hirsutum Plants[J]. European Journal of Plant Pathology, 2024, 168(2): 329-349. doi: 10.1007/s10658-023-02759-z

    CrossRef Google Scholar

    [15] QIU B L, CHEN H J, ZHENG L L, et al. An MYB Transcription Factor Modulates Panax notoginseng Resistance Against the Root Rot Pathogen Fusarium solani by Regulating the Jasmonate Acid Signaling Pathway and Photosynthesis[J]. Phytopathology, 2022, 112(6): 1323-1334. doi: 10.1094/PHYTO-07-21-0283-R

    CrossRef Google Scholar

    [16] 王继伟, 李怀方, 严衍录, 等. TMV侵染后烟叶叶绿体的荧光光谱与生理学特性[J]. 植物保护学报, 1995, 22(4): 315-318.

    Google Scholar

    [17] 谢奎忠, 邱慧珍, 岳云, 等. 尖孢镰刀菌侵染对马铃薯光合效率和叶绿素荧光参数影响[J]. 植物保护学报, 2022, 49(3): 927-937.

    Google Scholar

    [18] 张兆辉, 卢盼玲, 陈春宏, 等. 西葫芦抗白粉病的生理生化机制[J]. 分子植物育种, 2021, 19(9): 3074-3080.

    Google Scholar

    [19] 叶佳净, 赵锦鹏, 卞世杰, 等. 白粉病菌对结果期南瓜叶片光合特性和叶绿体超微结构的影响[J]. 河南农业科学, 2022, 51(8): 92-98.

    Google Scholar

    [20] GUILENGUE N, DO CÉU SILVA M, TALHINHAS P, et al. Subcuticular-Intracellular Hemibiotrophy of Colletotrichum Lupini in Lupinus Mutabilis[J]. Plants, 2022, 11(22): 3028. doi: 10.3390/plants11223028

    CrossRef Google Scholar

    [21] ZHANG B J, LIU X, SUN Y R, et al. Sclerospora graminicola Suppresses Plant Defense Responses by Disrupting Chlorophyll Biosynthesis and Photosynthesis in Foxtail Millet[J]. Frontiers in Plant Science, 2022(13): 928040.

    Google Scholar

    [22] 杨金花, 徐叶挺, 张校立. 梨火疫病研究进展[J]. 分子植物育种, 2022, 20(3): 1003-1013.

    Google Scholar

    [23] ZARZYNŃSKA-NOWAK A, JE Z · EWSKA M, HASIÓW-JAROSZEWSKA B, et al. A Comparison of Ultrastructural Changes of Barley Cells Infected with Mild and Aggressive Isolates of Barley Stripe Mosaic Virus[J]. Journal of Plant Diseases and Protection, 2015, 122(4): 153-160. doi: 10.1007/BF03356545

    CrossRef Google Scholar

    [24] 孟秀利, 林兆威, 杨德洁, 等. 槟榔黄化病植株组织结构观察及生理指标分析[J]. 分子植物育种, 2023, 21(7): 2350-2355.

    Google Scholar

    [25] 王莹, 秦阳阳, 曾婷, 等. 柑橘黄脉病毒侵染对柠檬光合特性和叶绿体超微结构的影响[J]. 园艺学报, 2022, 49(4): 861-867.

    Google Scholar

    [26] 胡运高, 杨国涛, 唐力琼, 等. 稻瘟病菌粗毒素对水稻光系统Ⅱ(PSⅡ)的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(8): 45-50, 61.

    Google Scholar

    [27] 周娜娜, 冯素萍, 高新生, 等. 植物光合作用的光抑制研究进展[J]. 中国农学通报, 2019, 35(15): 116-123. doi: 10.11924/j.issn.1000-6850.casb18020086

    CrossRef Google Scholar

    [28] WANG M, SUN Y M, SUN G M, et al. Water Balance Altered in Cucumber Plants Infected with Fusarium Oxysporum f. sp. Cucumerinum[J]. Scientific Reports, 2015(5): 7722.

    Google Scholar

    [29] LAWSON T, VIALET-CHABRAND S. Speedy Stomata, Photosynthesis and Plant Water Use Efficiency[J]. New Phytologist, 2019, 221(1): 93-98. doi: 10.1111/nph.15330

    CrossRef Google Scholar

    [30] HORST R J, ENGELSDORF T, SONNEWALD U, et al. Infection of Maize Leaves with Ustilago Maydis Prevents Establishment of C4 Photosynthesis[J]. Journal of Plant Physiology, 2008, 165(1): 19-28. doi: 10.1016/j.jplph.2007.05.008

    CrossRef Google Scholar

    [31] KOPCZEWSKI T, KU Z ' NIAK E, CIERESZKO I, et al. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses[J]. International Journal of Molecular Sciences, 2022, 23(20): 12418. doi: 10.3390/ijms232012418

    CrossRef Google Scholar

    [32] LIU Y, BUCHENAUER H. Effect of Infections with Barley Yellow Dwarf Virus and Fusarium spp. on Assimilation of 14CO2 by Flag Leaves and Translocation of Photosynthates in Wheat[J]. Journal of Plant Diseases and Protection, 2005, 112(6): 529-543. doi: 10.1007/BF03356150

    CrossRef Google Scholar

    [33] KANWAR P, JHA G. Alterations in Plant Sugar Metabolism: Signatory of Pathogen Attack[J]. Planta, 2019, 249(2): 305-318. doi: 10.1007/s00425-018-3018-3

    CrossRef Google Scholar

    [34] MELOTTO M, ZHANG L, OBLESSUC P R, et al. Stomatal Defense a Decade Later[J]. Plant Physiology, 2017, 174(2): 561-571. doi: 10.1104/pp.16.01853

    CrossRef Google Scholar

    [35] MELOTTO M, UNDERWOOD W, KOCZAN J, et al. Plant Stomata Function in Innate Immunity Against Bacterial Invasion[J]. Cell, 2006, 126(5): 969-980. doi: 10.1016/j.cell.2006.06.054

    CrossRef Google Scholar

    [36] WANG L J, GAO X, JIA G X. Stomata and ROS Changes during Botrytis Elliptica Infection in Diploid and Tetraploid Lilium Rosthornii Diels[J]. Plant Physiology and Biochemistry, 2021, 167: 366-375. doi: 10.1016/j.plaphy.2021.08.008

    CrossRef Google Scholar

    [37] HARRISON E L, ARCE CUBAS L, GRAY J E, et al. The Influence of Stomatal Morphology and Distribution on Photosynthetic Gas Exchange[J]. The Plant Journal, 2020, 101(4): 768-779. doi: 10.1111/tpj.14560

    CrossRef Google Scholar

    [38] MUIR C D. A Stomatal Model of Anatomical Tradeoffs between Gas Exchange and Pathogen Colonization[J]. Frontiers in Plant Science, 2020(11): 518991.

    Google Scholar

    [39] AGUADÉ D, POYATOS R, GÓMEZ M, et al. The Role of Defoliation and Root Rot Pathogen Infection in Driving the Mode of Drought-Related Physiological Decline in Scots Pine (Pinus Sylvestris L. )[J]. Tree Physiology, 2015, 35(3): 229-242. doi: 10.1093/treephys/tpv005

    CrossRef Google Scholar

    [40] MELOTTO M, UNDERWOOD W, HE S Y. Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases[J]. Annual Review of Phytopathology, 2008, 46: 101-122. doi: 10.1146/annurev.phyto.121107.104959

    CrossRef Google Scholar

    [41] 刘凤娇, 于耸, 刘冠. 生物与非生物逆境胁迫下植物脂质调控机制及其研究进展[J]. 中国油料作物学报, 2023, 45(5): 1062-1072.

    Google Scholar

    [42] JARVIS A J, DAVIES W J. The Coupled Response of Stomatal Conductance to Photosynthesis and Transpiration[J]. Journal of Experimental Botany, 1998, 49: 399-406. doi: 10.1093/jxb/49.Special_Issue.399

    CrossRef Google Scholar

    [43] 许大全. 气孔的不均匀关闭与光合作用的非气孔限制[J]. 植物生理学通讯, 1995, 31(4): 246-252.

    Google Scholar

    [44] SALMON Y, LINTUNEN A, DAYET A, et al. Leaf Carbon and Water Status Control Stomatal and Nonstomatal Limitations of Photosynthesis in Trees[J]. New Phytologist, 2020, 226(3): 690-703. doi: 10.1111/nph.16436

    CrossRef Google Scholar

    [45] BILGIN D D, ZAVALA J A, ZHU J, et al. Biotic Stress Globally Downregulates Photosynthesis Genes[J]. Plant, Cell & Environment, 2010, 33(10): 1597-1613.

    Google Scholar

    [46] YANG F, XIAO K Q, PAN H Y, et al. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions[J]. Frontiersin Plant Science, 2021(12): 637853.

    Google Scholar

    [47] HU Y T, ZHONG S F, ZHANG M, et al. Potential Role of Photosynthesis in the Regulation of Reactive Oxygen Species and Defence Responses to Blumeria graminis f. sp. tritici in Wheat[J]. International Journal of Molecular Sciences, 2020, 21(16): 5767. doi: 10.3390/ijms21165767

    CrossRef Google Scholar

    [48] CAMEJO D, GUZMÁN-CEDEÑO Á, MORENO A. Reactive Oxygen Species, Essential Molecules, during Plant-Pathogen Interactions[J]. Plant Physiology and Biochemistry, 2016, 103: 10-23. doi: 10.1016/j.plaphy.2016.02.035

    CrossRef Google Scholar

    [49] NOSEK M, KORNAŚ A, KUŹNIAK E, et al. Plastoquinone Redox State Modifies Plant Response to Pathogen[J]. Plant Physiology and Biochemistry, 2015, 96: 163-170. doi: 10.1016/j.plaphy.2015.07.028

    CrossRef Google Scholar

    [50] HANKE G, MULO P. Plant Type Ferredoxins and Ferredoxin-Dependent Metabolism[J]. Plant, Cell & Environment, 2013, 36(6): 1071-1084.

    Google Scholar

    [51] WANG M, RUI L, YAN H J, et al. The Major Leaf Ferredoxin Fd2 Regulates Plant Innate Immunity in Arabidopsis[J]. Molecular Plant Pathology, 2018, 19(6): 1377-1390. doi: 10.1111/mpp.12621

    CrossRef Google Scholar

    [52] WANG Y J, WEI X Y, JING X Q, et al. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation[J]. International Journal of Molecular Sciences, 2016, 17(6): 805. doi: 10.3390/ijms17060805

    CrossRef Google Scholar

    [53] YOSHIOKA H, ADACHI H, NAKANO T, et al. Hierarchical Regulation of NADPH Oxidase by Protein Kinases in Plant Immunity[J]. Physiological and Molecular Plant Pathology, 2016, 95: 20-26. doi: 10.1016/j.pmpp.2016.03.004

    CrossRef Google Scholar

    [54] SATTLER S E, MÈNE-SAFFRANÉ L, FARMER E E, et al. Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants[J]. The Plant Cell, 2006, 18(12): 3706-3720.

    Google Scholar

    [55] HOU X, RIVERS J, LEÓN P, et al. Synthesis and Function of Apocarotenoid Signals in Plants[J]. Trends in Plant Science, 2016, 21(9): 792-803. doi: 10.1016/j.tplants.2016.06.001

    CrossRef Google Scholar

    [56] FANELLI C, CASTORIA R, FABBRI A A, et al. Novel Study on the Elicitation of Hypersensitive Response by Polyunsaturated Fatty Acids in Potato Tuber[J]. Natural Toxins, 1992, 1(2): 136-146. doi: 10.1002/nt.2620010213

    CrossRef Google Scholar

    [57] MÈNE-SAFFRANÉ L, DUBUGNON L, CHÉTELAT A, et al. Nonenzymatic Oxidation of Trienoic Fatty Acids Contributes to Reactive Oxygen Species Management in Arabidopsis[J]. Journal of Biological Chemistry, 2009, 284(3): 1702-1708. doi: 10.1074/jbc.M807114200

    CrossRef Google Scholar

    [58] BARBAŚ P, SKIBA D, PSZCZÓŁKOWSKI P, et al. Mechanisms of Plant Natural Immunity and the Role of Selected Oxylipins as Molecular Mediators in Plant Protection[J]. Agronomy, 2022, 12(11): 2619. doi: 10.3390/agronomy12112619

    CrossRef Google Scholar

    [59] KÖSTER P, DEFALCO T A, ZIPFEL C. Ca2+Signals in Plant Immunity[J]. EMBO Journal, 2022, 41(12): e110741. doi: 10.15252/embj.2022110741

    CrossRef Google Scholar

    [60] KUMAR D. Salicylic Acid Signaling in Disease Resistance[J]. Plant Science, 2014, 228: 127-134. doi: 10.1016/j.plantsci.2014.04.014

    CrossRef Google Scholar

    [61] LU Y, YAO J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense[J]. International Journal of Molecular Sciences, 2018, 19(12): 3900. doi: 10.3390/ijms19123900

    CrossRef Google Scholar

    [62] ZHAO J P, ZHANG X, HONG Y G, et al. Chloroplast in Plant-Virus Interaction[J]. Frontiers in Microbiology, 2016(7): 1565.

    Google Scholar

    [63] WANG M Y, JI Z R, YAN H F, et al. Effector Sntf2 Interacted with Chloroplast-Related Protein Mdycf39 Promoting the Colonization of Colletotrichum gloeosporioides in Apple Leaf[J]. International Journal of Molecular Sciences, 2022, 23(12): 6379. doi: 10.3390/ijms23126379

    CrossRef Google Scholar

    [64] XU Q, TANG C L, WANG X D, et al. An Effector Protein of the Wheat Stripe Rust Fungus Targets Chloroplasts and Suppresses Chloroplast Function[J]. Nature Communications, 2019, 10(1): 5571. doi: 10.1038/s41467-019-13487-6

    CrossRef Google Scholar

    [65] JELENSKA J, VAN HAL J A, GREENBERG J T. Pseudomonas Syringae Hijacks Plant Stress Chaperone Machinery for Virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13177-13182.

    Google Scholar

    [66] NAKANO M, MUKAIHARA T. Ralstonia Solanacearum Type Ⅲ Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants[J]. Plant & Cell Physiology, 2018, 59(12): 2576-2589.

    Google Scholar

    [67] BHAT S, FOLIMONOVA S Y, COLE A B, et al. Influence of Host Chloroplast Proteins on Tobacco Mosaic Virus Accumulation and Intercellular Movement[J]. Plant Physiology, 2013, 161(1): 134-147.

    Google Scholar

    [68] CAPLAN J L, MAMILLAPALLI P, BURCH-SMITH T M, et al. Chloroplastic Protein NRIP1 Mediates Innate Immune Receptor Recognition of a Viral Effector[J]. Cell, 2008, 132(3): 449-462. doi: 10.1016/j.cell.2007.12.031

    CrossRef Google Scholar

    [69] ABBINK T E M, PEART J R, MOS T N M, et al. Silencing of a Gene Encoding a Protein Component of the Oxygen-Evolving Complex of Photosystem Ⅱ Enhances Virus Replication in Plants[J]. Virology, 2002, 295(2): 307-319. doi: 10.1006/viro.2002.1332

    CrossRef Google Scholar

    [70] HUH S U, KIM M J, HAM B K, et al. A Zinc Finger Protein Tsip1 Controls Cucumber Mosaic Virus Infection by Interacting with the Replication Complex on Vacuolar Membranes of the Tobacco Plant[J]. New Phytologist, 2011, 191(3): 746-762. doi: 10.1111/j.1469-8137.2011.03717.x

    CrossRef Google Scholar

    [71] FEKI S, LOUKILI M J, TRIKI-MARRAKCHI R, et al. Interaction between Tobacco Ribulose-1, 5-Biphosphate Carboxylase/Oxygenase Large Subunit (RubisCO-LSU)and the PVY Coat Protein (PVY-CP)[J]. European Journal of Plant Pathology, 2005, 112(3): 221-234. doi: 10.1007/s10658-004-6807-4

    CrossRef Google Scholar

    [72] JIN Y S, MA D Y, DONG J L, et al. The HC-Pro Protein of Potato Virus Y Interacts with NtMinD of Tobacco[J]. Molecular Plant-Microbe Interactions, 2007, 20(12): 1505-1511. doi: 10.1094/MPMI-20-12-1505

    CrossRef Google Scholar

    [73] LI H, MA D Y, JIN Y S, et al. Helper Component-Proteinase Enhances the Activity of 1-Deoxy-D-Xylulose-5-Phosphate Synthase and Promotes the Biosynthesis of Plastidic Isoprenoids in Potato Virus Y-Infected Tobacco[J]. Plant, Cell & Environment, 2015, 38(10): 2023-2034.

    Google Scholar

    [74] SHI BB, LIN L, WANG S H, et al. Identification and Regulation of Host Genes Related to Rice Stripe Virus Symptom Production[J]. New Phytologist, 2016, 209(3): 1106-1119. doi: 10.1111/nph.13699

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(932) PDF downloads(782) Cited by(0)

Access History

Other Articles By Authors

The Role of Photosynthesis in Plant-Pathogen Interactions

    Corresponding author: TIAN Xiaowei

Abstract: 

Throughout their growth cycles, plants face challenges from a variety of pathogens. To address these challenges, plants mobilize defense responses via their innate immune systems to counteract pathogen infections. Photosynthesis, as a crucial component in plants' defense against pathogenic microbial infections, not only provides essential energy and metabolites to support plant defense responses but also enhances plant resistance through various mechanisms such as signal transduction and gene expression regulation, ultimately influencing crop yield and quality. Comprehensive understanding of the effects of photosynthesis on plant-pathogen interactions is essential for prevention and control of disease and improving crop yield and quality. This paper comprehensively analyzes the effects of pathogen stress on the tissue structure, physiological, and biochemical processes associated with plant photosynthesis. This paper also briefly summarizes the factors influencing the photosynthesis, and the role of photosynthesis in disease prediction, also the linkage between photosynthesis and plant immunity, thereby offering a foundational reference for further research in plant photosynthesis under pathogen stress.

  • 开放科学(资源服务)标识码(OSID):

  • 植物在生长过程中不断受到外界生物胁迫(细菌、病毒、真菌、寄生植物、昆虫等)和非生物胁迫(干旱、低温、盐分、pH值变化等)的影响[1]. 这些外界压力迫使植物内部启动一系列复杂的生理和生化反应,涉及组织、细胞结构、功能和代谢等多个层面,以抵御胁迫造成的损害[2-7].

    植物病害作为限制全球农业生产的主要因素,严重威胁作物的健康和生长,进而影响作物的产量和品质. 光合作用作为植物生存的基础活动,在面对病原微生物侵袭时扮演着至关重要的角色. 当植物受到病原微生物侵染时,会通过调整气孔开闭状态以及合成特定代谢产物等方式来增强自身抵抗力. 这一过程中,参与光合作用的组织和细胞会发生一系列的变化,植物的光合能力也会发生改变[8]. 具体来说,病原微生物不仅破坏了叶绿体结构,还降低了气孔导度,增加了细胞间二氧化碳浓度,干扰了光合作用相关基因表达,从而降低了光合作用效率[9]. 此外,光合色素的降解进一步影响光能的捕获和转化效率,导致植物光合作用效率进一步下降[10]. 随着光合能力的变化,作物抵御病原微生物的能力也出现波动. 光合作用不仅是植物防御反应的重要能量来源,还可以调控防御信号分子合成,参与碳资源重新分配. 光合作用产物,如碳水化合物,在植物防御信号分子(如SA和JA)的合成中起着重要作用,能够参与调节植物的防御反应,提高自身的抗病能力[11].

    作物产量和品质的提升依赖于光合效率的增强. 因此,深入研究植物如何在病原微生物胁迫条件下调节其光合作用过程,探索有效的干预措施以提高作物抗病性,对于提高农作物产量和改善品质具有极其重要的意义. 这不仅有助于揭示植物与病原微生物互相作用的分子机制,还能为开发新型绿色农业技术提供科学依据.

1.   植物-病原微生物互作对光合作用的影响
  • 光合作用在植物与病害的互作中扮演着重要角色. 光合过程中,植物通过多种方式参与免疫防御反应[12]. 当植物受到病原微生物侵染时,其叶片的组织结构和叶绿素含量会发生变化,导致光合作用能力减弱. 同时,这种变化还会干扰气孔的正常调节功能,使得植物难以吸收足够的二氧化碳进行光合活动,从而直接影响植物的生长[13]. 病原微生物的侵染也会引起植物的氧化反应,诱导植物产生防御相关代谢产物,加剧植物对病害的应激反应,进一步影响其光合能力[14]. 为应对病原微生物的侵染,植物也会启动一系列的抗病机制. 例如,叶绿体内多种信号分子的合成、叶绿素含量的变化、光系统中心的调整以及光能量耗散方式的改变,都是植物抵御病原微生物的重要手段[15]. 此外,植物通过调整气孔的大小和数量,能够减轻病原微生物对其光合作用造成的负面影响,并尽可能优化光合作用条件以提高整体的光合速率.

  • 叶绿体是植物进行光合作用的核心器官,也是植物防御的主战场. 病原微生物通过攻击叶绿体,干扰其正常功能,从而降低植物的光合效率和免疫能力. 这种攻击会对叶绿体的结构和数量造成不同程度的影响[16]. 叶绿体结构变化包括:①叶绿体整体数量减少,叶绿素含量降低,且出现叶绿体聚集现象. ②叶绿体膨大、变形. ③膜结构异常,如出现外周囊泡、细胞质内陷、质膜增生、破裂等. ④叶绿体内部成分的变化,如间质小泡或空泡、膜间囊变大、淀粉粒增多,嗜锇体增多. ⑤叶绿体内部结构异常,如颗粒层消失,类囊体扭曲、松动或扩张,基质消失. 不同病原微生物对叶绿体结构的影响如表 1所示.

  • 病原微生物侵染寄主植物后,主要通过两个途径影响光化学反应. 一是病原微生物及其代谢产物通过干扰寄主植物的光合磷酸化过程,二是降低叶绿素含量,导致光化学反应活性降低. 例如,胡运高等[26]在研究稻瘟病粗毒素对水稻光系统Ⅱ的影响时,发现随着毒素浓度的增高,其对水稻光系统的影响作用增强,光合磷酸化作用下降,叶绿素含量降低,显著抑制了水稻的光化学活性. 而TMV病毒侵染甘蓝后,光化学活性却呈增加趋势,直到21~28 d后,光化学活性才受到抑制,迅速降低.

  • 水分胁迫会造成光抑制,给植物带来不利影响. 另外,水分胁迫也会导致气孔关闭,可能会使光合作用速率下降[27]. Wang等[28]在研究镰刀菌对黄瓜的影响时发现,感染尖孢镰刀菌后,黄瓜植株的吸水性和茎部导水能力明显下降,蒸腾速率和气孔导度显著降低,叶片细胞膜受损. 通过对蒸腾速率和导水能力与光化学活性进行相关性分析,发现它们之间存在显著相关性. 这表明水分代谢会影响植物的光合作用,水分利用率的降低也会导致光合作用下降[29].

  • 植物叶片作为光合作用的主要器官,可以将光能转化为化学能,维持植物正常的生长繁殖. 然而,由于叶片表面积大,容易受到病原微生物的侵染,导致叶片的代谢过程发生变化. CO2的同化是光合作用过程的重要组成部分,需要在叶绿体中进行,且涉及多种酶的参与. 病原微生物侵染叶片时往往会破坏叶绿体结构和参与光合作用酶的活性,从而抑制CO2的固定. 如受玉米黑粉病感染的玉米叶片组织的C4过程中会受到抑制,新陈代谢的过程会受到阻碍[30]. 感染叶片的葡萄糖与蔗糖的比值会下降[31]. 其中病原微生物侵染主要对宿主植物吸收CO2的速率具有影响,但不同病原微生物对宿主植物的影响程度及进程有所差别. 如大麦黄矮病毒(BYDV)侵染大麦后,植物对CO2的吸收速率明显降低[32],而在侵染灰葡萄孢的番茄叶片中光合速率会上升[33].

  • 保卫细胞是植物调节气体交换和蒸腾作用的特化表皮细胞,保卫细胞间的空隙就是气孔. 在以往的植物-病原互作研究中,气孔主要被作为病原微生物侵染植物的入口开展研究. 近些年的研究发现,气孔作为植物固有的免疫系统的一部分,在抵御病原侵染中发挥着积极作用[34]. Melotto等[35]研究发现在细菌侵染植物时,气孔关闭会降低病害的严重程度. 在植物受到病原微生物侵染时,叶片气孔的形态和密度都会发生一系列的适应性变化[36-38]. 气孔随着不同病原微生物的侵染,呈现开放和关闭两种状态,间接影响光合效率[39-40]. 当植物受到病原微生物侵染,气孔关闭,阻碍环境中的CO2进入叶片,向叶绿体的羧化部位扩散,叶片细胞间的CO2浓度下降,影响碳同化,从而使光合速率下降,光合产物的累积及运输减少[13]. 气孔的打开或关闭取决于保护细胞的膨胀或松弛,由ROS、NO、NADPH、H2O2和Ca2+等多种信号调节[41]. 其中部分参与气孔调节的信号也参与着光合作用过程[42].

    植物受到病原微生物侵染时会诱发植物气孔不均匀关闭的现象. 在进行气孔导度测定中,往往会出现气孔导度和光合速率变化趋向相似的情况,但此时光合速率降低的因素不一定是气孔导度降低的结果,也有可能是非气孔限制因素. 有学者认为,只有当胞间CO2浓度降低、气孔限制值增大时,才可以得出光合速率降低是由于气孔导度降低引起的结论[43]. 部分学者认为,限制光合作用的气孔因素和非气孔因素不是相互独立的,而是在动态变化之中,关于气孔与光合作用之间的关系还需要进一步研究[44].

  • 光合作用是植物生长发育的关键一环,免疫防御是植物应对复杂生长环境的关键. 已有多项研究表明,植物的光合作用与免疫防御之间相互关联. 光合作用可以影响细胞内的多个信号通路,为免疫防御提供物质和能量,而免疫防御过程也会对光合作用产生反馈作用[45]. 在免疫防御的过程中光合部位会发生一系列的变化,其中叶绿体作为光合作用的主要场所,不仅可以与其他细胞器传递信息,也是植物-病原微生物互作的关键战场. 在病原微生物的侵染下,通过诱导活性氧(ROS)产生和调节激素变化等方式参与植物的防御过程[46]. 参与植物免疫的光合作用因素如表 2所示.

  • 叶绿体作为光合作用的主要器官,在植物免疫中起着重要作用,相应的,叶绿体也成为病原微生物的攻击目标. 不同的病原微生物通过破坏叶绿体组织等方式影响其功能,以促使病原微生物在寄主植物中的定殖. 叶绿体本身是来自其细菌祖先、病毒和宿主植物的各种起源成分的嵌合体. 越来越多的研究表明,叶绿体可以与病原微生物相互作用,涉及病原微生物复制、移动、症状和植物防御[62]. 病原微生物蛋白与叶绿体蛋白间的相互作用如表 3所示.

2.   结论与讨论
  • 光合作用在调节病原微生物侵染和植物免疫等生物过程中扮演着至关重要的角色. 保证植物的光合作用免受病原微生物效应物和植物毒素的影响,是提高作物产量与品质的关键策略之一,也是当前亟待深入研究的领域. 因此,研究者们需要进一步识别更多参与病原微生物侵染及病原微生物防御反应中的叶绿体因子,阐明它们在植物-病原微生物相互作用中的具体功能及其作用机制. 此外,还需探究病原微生物如何调控自身及其相关信号分子(如与叶绿体相关的)的表达,从而影响宿主植物对感染的反应;同时了解这些致病因子或植物防御信号是如何在不同细胞器间传递的. 通过上述研究,可以为开发新的抗病策略奠定基础,即通过调控宿主内特定因子的表达水平来有效控制病害发生,进而为农作物在面对生物胁迫时实现高产、优质的目标提供绿色解决方案.

Table (3) Reference (74)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return