$ {\mathbb{R}}^d$)" /> $ {\mathbb{R}}^d$)" /> $ {\mathbb{R}}^d$)" /> $ {\mathbb{R}}^d$)" />

Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 44 Issue 4
Article Contents

RUI Li, LU Guanghui. Estimation of Fractional Maximal Operator and Its Commutator on Generalized Orlicz-Morrey Spaces over Dunkl Setting[J]. Journal of Southwest University Natural Science Edition, 2022, 44(4): 122-127. doi: 10.13718/j.cnki.xdzk.2022.04.015
Citation: RUI Li, LU Guanghui. Estimation of Fractional Maximal Operator and Its Commutator on Generalized Orlicz-Morrey Spaces over Dunkl Setting[J]. Journal of Southwest University Natural Science Edition, 2022, 44(4): 122-127. doi: 10.13718/j.cnki.xdzk.2022.04.015

Estimation of Fractional Maximal Operator and Its Commutator on Generalized Orlicz-Morrey Spaces over Dunkl Setting

More Information
  • Corresponding author: LU Guanghui
  • Received Date: 23/05/2021
    Available Online: 20/04/2022
  • MSC: O174.2

  • In this paper, the authors firstly establish the definition of generalized Orlicz-Morrey spaces related to Dunkl setting. Secondly, by using the real-variable methods of harmonic analysis and the properties of Dunkl setting, the authors proved that fractional maximal operator associated with Dunkl setting Mα, k and its commutator Mα, k, b which is generated by BMOk($ {\mathbb{R}}^d$) function and Mα, k is bounded on generalized Orlicz-Morrey spaces with Dunkl setting.
  • 加载中
  • [1] 高亚瑞, 陶双平. 粗糙核奇异积分的Toeplitz-型算子的加权端点估计[J]. 西南大学学报(自然科学版), 2021, 43(12): 81-87.

    Google Scholar

    [2] 王晓燕, 赵凯. 与高阶Schrödinger-型算子相关的变分算子在Herz-型空间的有界性[J]. 西南大学学报(自然科学版), 2021, 43(12): 88-94.

    Google Scholar

    [3] 陈雪, 黄穗. 调和Fock空间[J]. 西南师范大学学报(自然科学版), 2020, 45(2): 26-30.

    Google Scholar

    [4] LU G. Parameter Marcinkiewicz Integral and Its Commutator on Generalized Orlicz-Morrey Spaces[J]. Journal of the Korean Mathematical Society, 2021, 58(2): 383-400.

    Google Scholar

    [5] DERINGOZ F, GULIYEV V S, SAMKO S. Boundedness of the Maximal and Singular Operators on Generalized Orlicz-Morrey Spaces[C] //Operator Theory, Operator Algebras and Applications, 2014.

    Google Scholar

    [6] DUNKL C F. Differential-Difference Operators Associated with Reflection Groups[J]. Transactions of the American Mathematical Society, 1989, 311(1): 167-183. doi: 10.1090/S0002-9947-1989-0951883-8

    CrossRef Google Scholar

    [7] GULIYEV V S, MAMMADOV Y Y. On Fractional Maximal Function and Fractional Integrals Associated with the Dunkl Operator on the Real Line[J]. Journal of Mathematical Analysis and Applications, 2009, 353(1): 449-459. doi: 10.1016/j.jmaa.2008.11.083

    CrossRef Google Scholar

    [8] SOLTANI F. Lp-Fourier Multipliers for the Dunkl Operator on the Real Line[J]. Journal of Functional Analysis, 2004, 209(1): 16-35. doi: 10.1016/j.jfa.2003.11.009

    CrossRef Google Scholar

    [9] ØRSTED B, SOMBERG P, SOUČEK V. The Howe Duality for the Dunkl Version of the Dirac Operator[J]. Advances in Applied Clifford Algebras, 2009, 19(2): 403-415. doi: 10.1007/s00006-009-0166-3

    CrossRef Google Scholar

    [10] DELEAVAL L. A Note on the Behavior of the Dunkl Maximal Operator[J]. Advances in Pure and Applied Mathematics, 2018, 9(4): 237-246. doi: 10.1515/apam-2018-0019

    CrossRef Google Scholar

    [11] BEN SAǏD S, ØRSTED B. The Wave Equation for Dunkl Operators[J]. Indagationes Mathematicae, 2005, 16(3/4): 351-391.

    Google Scholar

    [12] REN G B. Almansi Decomposition for Dunkl Operators[J]. Science in China Series A: Mathematics, 2005, 48(1): 333-342.

    Google Scholar

    [13] MASLOUHI M, YOUSSFI E H. Harmonic Functions Associated to Dunkl Operators[J]. Monatshefte Für Mathematik, 2007, 152(4): 337-345. doi: 10.1007/s00605-007-0475-3

    CrossRef Google Scholar

    [14] KAMOUN L. Besov-Type Spaces for the Dunkl Operator on the Real Line[J]. Journal of Computational and Applied Mathematics, 2007, 199(1): 56-67. doi: 10.1016/j.cam.2005.06.054

    CrossRef Google Scholar

    [15] GULIYEV V S, MAMMADOV Y Y, MUSLUMOVA F. Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting[J]. Journal of Mathematical Study, 2020, 53(1): 45-65. doi: 10.4208/jms.v53n1.20.03

    CrossRef Google Scholar

    [16] GULIYEV V S, MAMMADOV Y Y, MUSLUMOVA F. Characterization of Fractional Maximal Operator and Its Commutators on Orlicz Spaces in the Dunkl Setting[J]. Journal of Pseudo-Differential Operators and Applications, 2020, 11(4): 1699-1717. doi: 10.1007/s11868-020-00364-w

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(608) PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Estimation of Fractional Maximal Operator and Its Commutator on Generalized Orlicz-Morrey Spaces over Dunkl Setting

    Corresponding author: LU Guanghui

Abstract: In this paper, the authors firstly establish the definition of generalized Orlicz-Morrey spaces related to Dunkl setting. Secondly, by using the real-variable methods of harmonic analysis and the properties of Dunkl setting, the authors proved that fractional maximal operator associated with Dunkl setting Mα, k and its commutator Mα, k, b which is generated by BMOk($ {\mathbb{R}}^d$) function and Mα, k is bounded on generalized Orlicz-Morrey spaces with Dunkl setting.

  • 开放科学(资源服务)标识码(OSID):

  • 众所周知,算子与函数空间相关问题的研究一直是现代调和分析的热点问题. 例如,文献[1]证明了带粗糙核的奇异积分Toplitz-型算子在加权BMO空间上的有界性. 更多研究可参见文献[2-5]. 文献[6]首次介绍了欧氏空间上的差微分算子,即Dunkl算子{Dkj}j=1d. Dunkl算子是一类与有限反射群相关的微分反射算子. 其不仅将黎曼对称空间中常见的偏导数与不变微分算子进行了推广,而且还推广了布朗运动模型,有关该类算子的更多研究和结果,可参见文献[7-14].

    对任意v$ {\mathbb{R}}^d$\{0},定义σvv垂直于超平面Hv$ {\mathbb{R}}^d$的反射

    其中〈·,·〉为欧氏空间上的内积,且对任意x$ {\mathbb{R}}^d$,有‖x‖=$ \sqrt {\left\langle {x, x} \right\rangle } $. 此外,设有限集D$ {\mathbb{R}}^d$\{0},若对于任意vD,恒有σvD=D,则称D为根系统.

    设由反射族{σv}vD构成的有限群G为根系统反射群. 对任意v$ {\mathbb{R}}$kv≥0,用hk表示$ {\mathbb{R}}^d$上的权函数,有

    hkG不变函数,且是γk次齐次的,其中γk=$ \sum\limits_{v \in {D^ + }} {{k_v}} $D+为正极子系统. 基于hk的前提下,文献[15]得到了与Dunkl集相关的极大算子在Orlicz空间上的有界性. 随后,文献[16]证明了基于Dunkl集上分数次极大算子在Orlicz空间上的有界性. 文献[5]得到了极大算子与奇异算子在广义Orlicz-Morrey空间上的有界性. 受以上结论的启发,本文得到了与Dunkl集相关的广义Orlicz-Morrey空间的定义,并证明了基于Dunkl集上分数次极大算子及其与BMOk($ {\mathbb{R}}^d$)生成的交换子在广义Orlicz-Morrey空间上的有界性. 设

    是中心为x$ {\mathbb{R}}^d$且半径为r的球,在Dunkl集上的测度为

    其中

    Sd-1$ {\mathbb{R}}^d$上的单位球,为标准化曲面测度.

    定义1[16]  设fLloc1,k($ {\mathbb{R}}^d$),带有Dunkl集的有界平均振荡空间定义为

    其中

    fB(xr)表示函数f在球B(xr)上的平均值.

    设0<αd+2γkfLloc1,k($ {\mathbb{R}}^d$),带Dunkl集的分数次极大算子定义为

    给定b∈BMOk($ {\mathbb{R}}^d$),与带Dunkl集的分数次极大算子相关的交换子Mαkb定义为

    若存在连续凸函数Φ:[0,∞) [0,∞],满足

    则称Φ为Young函数.

    全文用Y表示满足0<Φ(r)<∞的全体Young函数构成的集合. 根据凸性以及Φ(0)=0,容易验证Young函数都是增的.

    定义2[16]  设ΦY,则带有Dunkl集的Orlicz空间LΦk($ {\mathbb{R}}^d$)定义为

    带有Dunkl集的弱Orlicz空间WLΦk($ {\mathbb{R}}^d$)的定义为

    其中

    接下来,我们回顾一些逆函数的有关概念[12]. 对于一个函数ΦY,且0≤t≤∞,设

    ΦY,则称Φ-1Φ的逆函数. 很明显,对于任意的r≥0,有rΦ-1(r)${{\mathit{\tilde \Phi }}^{ - 1}}$(r)≤2r,其中${{\mathit{\tilde \Phi }}}$(r)定义为

    ΦY,若存在常数C>1,使得对任意的r>0,有Φ(2r)≤(r),则称Φ满足Δ2条件,即ΦΔ2. 另一方面,若Φ(r)≤$ \frac{1}{{2\kappa }}$Φ(κr),则称Φ满足∇2条件,即Φ∈∇2.

    类似地,我们给出如下带有Dunkl集的广义Orlicz-Morrey空间的定义:

    定义3  设φ(xr)>0为$ {\mathbb{R}}^d$×(0,∞)上的可测函数,ΦY,带有Dunkl集的广义Orlicz-Morrey空间定义为

    其中

    相应地,带有Dunkl集的弱广义Orlicz-Morrey空间定义为

    其中

    全文中,C表示与主要参数无关的常数,其值在不同的地方可能不尽相同. 对于$ {\mathbb{R}}^d$上的可测子集EχE表示其上的特征函数.

    引理1[15]  若fg$ {\mathbb{R}}^d$上的可测函数,ΦY$ {\mathit{\tilde \Phi }}$(r)为其补函数,则有

    引理2[16]  设ΦY,则对任意球B$ {\mathbb{R}}^d$,有

    引理3[16]  设ΦY,则对任意球B,有

    引理4[16]   (ⅰ)若f∈BMOk($ {\mathbb{R}}^d$),则存在p∈[1,∞),有

    且对任意0<2rt,有

    (ⅱ)设f∈BMOk($ {\mathbb{R}}^d$),则对ΦYΔ2,有

    引理5[15]  设ΦYΔ2,球B$ {\mathbb{R}}^d$fLΦk(B),则对于1<p<∞,有

    其中C是不依赖于fb的正常数.

    定理1  设0<αd+2γkΦY∩∇2,且B=B(xr),若函数对(φ1φ2)和(ΦΨ)满足条件

    MαkMΦφ1k($ {\mathbb{R}}^d$)到MΨφ2k($ {\mathbb{R}}^d$)有界.

      对任意的fLlocΦk($ {\mathbb{R}}^d$),有f=f1+f2,其中f1=2Bf2=$f{\chi _{{{\mathbb{R}}^d}\backslash 2B}}$r>0,则有

    MαkLΦk($ {\mathbb{R}}^d$)到LΨk($ {\mathbb{R}}^d$)有界[13],得到

    设任意zB,注意到当B(zt)∩($ {\mathbb{R}}^d$\2B)=$ \emptyset $时,有tr. 事实上,若yB(zt)∩($ {\mathbb{R}}^d$\2B),有t>|y-z|≥|x-y|-|x-z|>2r-r=r. 另一方面,若yB(zt)∩($ {\mathbb{R}}^d$\2B),有|x-y|≤|y-z|+|x-z|<t+r<2t. 因此,B(zt)∩($ {\mathbb{R}}^d$\2B)⊂B(x,2t). 则

    由引理2、引理3和(1)式,有

    则有

    结合(2)式可知

    定理2  设0<αd+2γkb∈BMOk($ {\mathbb{R}}^d$),ΦYγ∩∇2ΨYΔ2,若函数对(φ1φ2)和(ΦΨ)满足以下条件:

    MαkbMΦφ1k($ {\mathbb{R}}^d$)到MΨφ2k($ {\mathbb{R}}^d$)上有界.

      设0<αd+2γkb∈BMOk($ {\mathbb{R}}^d$),ΦYγ∩∇2ΨYΔ2,若ΦΨ满足(3)式,则对任意的球B=B(xr)和fLΦk($ {\mathbb{R}}^d$),有f=f1+f2,其中f1f2同定理1证明中的分解相一致,则

    MαkbLΦk($ {\mathbb{R}}^d$)到LΨk($ {\mathbb{R}}^d$)有界[13],得到

    对任意的zBB(zt)∩($ {\mathbb{R}}^d$\2B)=$ \emptyset $,且B(zt)∩($ {\mathbb{R}}^d$\2B)⊂B(x,2t). 因此

    进一步,得到

    由引理2、引理1、引理3和引理4,有

    对于J2,由引理4、(3)式和引理3,有

    J1J2的估计可得

    则可得到

    再结合(4)式,不难得到

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return