-
随着科学技术的变革,教育研究范式逐渐从经验主义向科学主义转变,教育者也应遵从数据探索教育规律,从而作出科学的教育决策。与此同时,当前的学生正处于数字化时代,其生活环境和生活方式受到数据的深刻影响,那些关于兴趣的、活动的、情绪的、考试的、家庭的、特长的、试错的数据,均可转化为有用的信息。例如,教师可基于数据对学生的学业表现进行个性化评估[1],并反思自身教学、促进专业发展、增强教学效果等。可以说,数据在当下的教育中扮演了越来越重要的角色。而数据价值的真正彰显离不开教师的参与,教师的数据素养是保障数据服务教育实践的关键。近年来,教师数据素养已逐渐受到研究者的广泛关注。当前,国内也有不少学者围绕教师数据素养展开研究,如刘雅馨等人的《大数据时代教师数据素养模型构建》、林秀清等人的《中小学教师数据素养的发展路径与培养策略》等。然而,这些研究大多聚焦于教师数据素养的概念内涵、评价指标以及发展路径等单一方面,较少针对教师数据素养进行全面分析和系统把握,尤其缺乏对国外新近相关研究与实践的梳理和总结。鉴于此,本研究从文献分析的视角出发,通过对国外教师数据素养相关文献的梳理,重点分析关于教师数据素养的概念内涵、理论架构、核心内容、专业培训以及评估等方面的研究和实践,并在此基础上提炼出适合当下我国教师数据素养发展的有益经验,以期为我国未来的教师数据素养研究与发展提供有效参考。
Research and Practice of Teachers' Data Literacy: International Experience and Enlightenment
-
摘要: 近年来,随着教师队伍建设的不断推进和发展,教师数据素养逐渐成为教师教育领域的重要内容,并受到越来越多研究者的关注。良好的数据素养是进行科学决策、提升教学质量的重要保障。研究基于文献分析,在厘清教师数据素养概念内涵的基础上,重点分析国外在教师数据素养理论架构、核心内容、实践案例以及评估等方面的积极探索和有益经验,进而探讨其对我国教师数据素养研究与培养实践的启示。未来,我国应致力于做好教师数据素养培养的顶层设计、鼓励多方力量的协同参与、提供终身性的专业支持和服务、加强教师数据素养的理论研究。Abstract: In recent years, with the continuous development of teacher team construction, teacher data literacy has become an important part of teacher education, and attracted more and more researchers' attention. Sufficient data literacy can be considered as a guarantee for teachers to make correct instructional decisions and improve their teaching quality. Based on the review and analysis of literature related to teachers' data literacy, this paper clarified its concept, focused onanalyzing the active exploration and beneficial experience of foreign countries in the theoretical frameworks, core components, practice cases and evaluation of teacher data literacy, and then discussed their enlightenment to the research and practice concerning teacher data literacy in China. This paper argues that in the future, China should devote itself to promote the development of teachers' data literacy training by strengthening top-level design, encouragecollaborative participation of multiple forces, provide lifelong professional support and services, and deepen the theoretical research of teachers' data literacy.
-
Key words:
- data quality /
- theoretical frameworks /
- practical cases /
- evaluation /
- experience and enlightenment .
-
[1] 上超望, 韩梦, 刘清堂. 大数据背景下在线学习过程性评价系统设计研究[J]. 中国电化教育, 2018(5): 90-95. doi: 10.3969/j.issn.1006-9860.2018.05.013 [2] SHIELD S M. Information literacy, statistical literacy and data literacy [J]. Iassist Quarterly, 2004, 28(2): 7-14. [3] SCHIELD M. Statistical literacy: thinking critically about statistics [J]. Of Significance, 1999, 1(1): 15-20. [4] BEST J. More damned lies and statistics: how numbers confuse public issues [M]. Berkeley, CA: University of California Press, 2004. [5] DEAHL E. Better the data you know: developing youth data literacy in schools and informal learning environments [D]. Cambridge: Massachusetts Institute of Technology, 2014. [6] doi: http://www.researchgate.net/publication/306156393_Defining_data_literacy_A_report_on_a_convening_of_experts MANDINACH E B, GUMMER E S. Defining data literacy: a report on a convening of experts [J]. Journal of Educational Research and Policy Studies, 2013, 13(2): 6-28. [7] DYER K. Data literacy: what it is and how it differs from assessment literacy [EB/OL]. (2014-09-18)[2020-05-20]. https://www.nwea.org/blog/2014/data-literacy-differs-assessment-literacy/. [8] GILL B, COFFE-BORDEN B, HALLGREN K. A conceptual framework for data-driven decision making. [EB/OL]. (2014-06-02)[2020-06-25]. https://search.proquest.com/docview/2082150217?pq-origsite=summon. [9] MEANS B, CHEN E, DEBARGER A, et al. Teachers' ability to use data to inform instruction: challenges and supports [R]. Washington, DC: U.S. Department of Education Office of Planning, Evaluation and Policy Development, 2011. [10] COBURN C E, TURNER E O. Research on data use: a framework and analysis[J]. Measurement: Interdisciplinary Research and Perspectives, 2011, 9(4): 173-206. doi: 10.1080/15366367.2011.626729 [11] GOLDRING E, BERENDS M. Leading with data: pathways to improve your school[M]. Thousand Oaks, CA: Corwin Press, 2009. [12] MANDINACH E B. Data-driven school improvement: Linking data and learning. technology, education--connections (TEC) series[M]. NY: Teachers College Press, 2008: 209-232. [13] WAYMAN J C, STRINGFIELD S. Technology-supported involvement of entire faculties in examination of student data for instructional improvement [J]. American Journal of Education, 2006, 112(4): 549-571. doi: 10.1086/505059 [14] WHITE S H. Show me the proof! Tools and strategies to make data work for you [M]. Englewood, CO: Advanced Learning Press, 2005. [15] ABBOTT D V. A functionality framework for educational organizations: achieving accountability at scale[M]// MANDINACH E B, HONEY M. Data-driven school improvement: linking data and learning. NY: Teachers College Press, 2008 : 257-276. [16] GUMMER E S, MANDINACH E B. Building a conceptual framework for data literacy [J]. Teachers College Record, 2015, 117(4): 1-22. [17] MAYBEE C, ZILINSKI L. Data informed learning: a next phase data literacy framework for higher education [EB/OL]. (2016-02-24)[2020-06-27]. https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/pra2.2015.1450520100108. [18] LIGHT D, WEXLER D, HEINZE J. Keeping teachers in the center: a framework for data-driven decision-making[EB/OL]. (2005-06-18)[2020-05-19]. http://cct.edc.org/sites/cct.edc.org/files/publications/LightWexlerHeinze2005.pdf. [19] doi: http://eric.ed.gov/?id=EJ1056728 MANDINACH E B, FRIEDMAN J M, GUMMER E S. How can schools of education help to build educators' capacity to use data: a systemic view of the issue [J]. Teachers College Record, 2015, 117(4): 1-50. [20] doi: http://www.degruyter.com/view/j/libr.2013.63.issue-2/libri-2013-0010/libri-2013-0010.xml PRADO J C, MARZAL M A. Incorporating data literacy into information literacy programs: core competencies and contents [J]. Libri, 2013, 63(2): 123-134. [21] CAMPAIGN D Q. Investing in educator data literacy improves student achievement[EB/OL]. (2012-04-20)[2020-08-23]. https://files.eric.ed.gov/fulltext/ED548266.pdf. [22] doi: http://www.tandfonline.com/doi/full/10.1080/19386389.2010.506379?src=recsys& QIN J, D'IGNAZIO J. The central role of metadata in a science data literacy course[J]. Journal of Library Metadata, 2010, 10(2/3): 188-204. [23] QIN J, D'IGNAZIO J. Lessons learned from a two-year experience in science data literacy education [EB/OL]. (2010-01-22)[2020-07-19]. https://www.researchgate.net/profile/Jian_Qin3/publication/44268284_Lessons_Learned_from_a_Two-Year_Experience_in_Science_Data_Literacy_Education/links/54202e420cf241a65a1b0d25.pdf. [24] LAI M K, WILSON A, McNAUGHTON S, et al. Improving achievement in secondary schools: Impact of a literacy project on reading comprehension and secondary school qualifications[J]. Reading Research Quarterly, 2014, 49(3): 305-334. doi: 10.1002/rrq.73 [25] MANDINACH E B, GUMMER E S. Data literacy for educators: making it count in teacher preparation and practice[M]. New York: Teachers College Press, 2016: 4. [26] VAN G M, KEUNING T, VISSCHER A J, et al. Asse-ssing the effects of a schoolwide data-based decision making intervention on student achievement growth in primary schools[J]. American Educational Research Journal, 2016, 53(2): 360-394. doi: 10.3102/0002831216637346 [27] KIPPERS W B, POORTMAN C L, SCHILDKAMP K, et al. Data literacy: what do educators learn and struggle with during a data use intervention?[J]. Studies in Educational Evaluation, 2018, 56(1): 21-31. [28] EBBELER J, POORTMAN C L, SCHILDKAMP K, et al. The effects of a data use intervention on educators' satisfaction and data literacy: educational assessment[J]. Evaluation and Accountabilit, 2017, 29(1): 83-105. doi: 10.1007/s11092-016-9251-z [29] doi: http://www.sciencedirect.com/science/article/pii/S0742051X16301391 MANDINACH E B, GUMMER E S. What does it mean for teachers to be data literate: laying out the skills, knowledge, and dispositions[J]. Teaching and Teacher Education, 2016, a(60): 366-376. [30] 李中国. 教师培养供给侧的问题解析与破解路径[J]. 国家教育行政学院学报, 2020(1):64-69,88. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GJXZ202001014.htm