-
我国西南岩溶地区是世界上最大的一片裸露、半裸露岩溶区,以分布面积最大、发育最强烈、发育最典型、发育种类最全、生态环境最脆弱著称[1].重庆是我国碳酸盐分布最广、喀斯特发育最强烈的省区之一,全市碳酸盐裸露面积多达3万km2,占全省总面积的40.02%,喀斯特地区居民占全省人口总数的34.6%[2].碳酸盐抗风蚀能力强,硅酸盐含量低,造壤能力差,成土速率慢;长期的岩溶作用导致地表保水能力差,夏季暴雨冲击后岩石裸露,加之过伐、过垦等不合理的人类活动,人地矛盾更加突出,已经形成了连片半裸露的石山,严重威胁了当地居民的生活[3-4].
对于土壤微生物多样性的研究方法,多数基于纯培养、DGGE和构建克隆文库.据调查,土壤中微生物的可培养率仅为0.1%~1%[5-6],为获得更多不能分离培养的土壤微生物信息,非培养研究为生物多样性的方法应运而生. DGGE和克隆文库均是以传统分子生物学方法——Sanger测序方法为基础的,但由于DGGE可用于分析的片段长度太短,分类信息不够准确,常导致相近的微生物无法区分;而克隆文库方法耗时耗力,花费巨大,只有在克隆数目足够多的情况下才能完整地反应土壤微生物情况[7].近年来,第二代测序方法的出现解决了上述方法通量低、信息量少、耗时长的问题,逐渐成为土壤微生物多样性研究方法的主流[8].原核微生物的16s rRNA/rDNA和真核微生物的18s rRNA/rDNA或ITs rDNA序列都具有一定的保守性,这些保守序列为全体微生物所共有,保守序列中由于进化形成的部分可变区域造成了序列差异性,这些差异性的测定和比对常用于鉴定微生物种类和揭示微生物群落的多样性.
为进一步探索适应石漠化地区特殊生境的微生物种群,加快推动微生物肥料的研发,促进桑树及其他生态树种对石漠化生境的恢复功能的发挥,本研究以石漠化地区长势良好的桑林根际土壤为实验材料,对生态桑林根际土壤微生物群落多样性进行了16s和ITs测序分析,旨在为石漠化地区微生物肥料设计研究提供依据.
The Diversity of Microbial Resources in Ecological Mulberry Rhizosphere Soil in a Rocky Desertification Area
-
摘要: 以石漠化地区生态桑林根际土壤微生物为研究对象,对微生物群落多样性进行了16s、ITs测序分析以及土壤微生物测序热图分析.结果表明:石漠化地区原核微生物中优势物种为变形菌门、放线菌门和异常球菌-栖热菌门等细菌;优势真核微生物为子囊菌门、接合菌门和担子菌门真菌.热图分析表明,其中:① 有益微生物包括变性菌门的硫杆菌属、紫色杆菌属和假单胞菌属细菌,异常球菌-栖热菌门的特吕珀菌属细菌以及接合菌门的被孢霉属真菌;② 与植物病变、腐化有关的真菌种类为子囊菌;③ Setomelanomma属真菌的功能尚不明确.Abstract: For scientific usage of scarce land resources and improvement of ecological resistance of mulberry, mulberry rhizosphere soil microbes in a rocky desertification area were investigated. Soil microbial community diversity was analysed by ways of 16S rDNA sequence and ITS sequence and soil microbial sequencing heatmap. The results showed that the dominant prokaryotic microbes in this area were bacteria of Proteobacteria, Actinobacteria and Deinococcus-Thermus, and the dominant eukaryotic microorganisms were fungi of Ascomycota, Zygomycota and Basido-mycota. Heatmap analysis showed that beneficial microorganisms included the bacteria genera Thiobacillus, Janthinobacterium and Pseudomonas of Proteobacteria and Truepera of Deinococcus-Thermus, and the fungus genus Mortierella of Zygomycota. Fungi related to plant diseases and decay were found to belong to Ascomycota. The function of the fungus genus Setomelanomma remained undefined. The complex interaction among these microbial communities will be focused on in our next study in order to support microbial fertilizer design in rocky desertification areas.
-
[1] 孙凡, 徐胜旺, 马生丽, 等.典型喀斯特地区季节性石漠化与生态环境建设[J].西南农业大学学报(社会科学版), 2011, 9(5): 1-6. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SCSM201105001.htm [2] 朱章雄, 张治伟, 蒋勇军.重庆典型岩溶区石漠化现状及综合治理初探[J].人民长江, 2006, 37(11): 90-92, 102. doi: 10.3969/j.issn.1001-4179.2006.11.034 [3] 施松梅, 陈珂, 涂波, 等.石漠化地区桑根际AM真菌多样性及桑壮苗培育研究[J].西南大学学报(自然科学版), 2013, 35(10): 24-30. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=20120998&flag=1 [4] 苏维词, 杨华, 李晴, 等.我国西南喀斯特山区土地石漠化成因及防治[J].土壤通报, 2006, 37(3): 447-451. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200603007.htm [5] PACE N R. A Molecular View of Microbial Diversity and the Biosphere[J]. Science, 1997, 276(5313): 734-740. doi: 10.1126/science.276.5313.734 [6] TORSVIK V, GOKSOYR J, DAAE F L. High Diversity in DNA of Soil Bacteria[J]. Applied and Environmental Microbiology, 1990, 56(3): 782-787. [7] 薛超, 黄启为, 凌宁, 等.连作土壤微生物区系分析、调控及高通量研究方法[J].土壤学报, 2011, 48(3): 612-618. doi: 10.11766/trxb201007120287 [8] 楼骏, 柳勇, 李延.高通量测序技术在土壤微生物多样性研究中的研究进展[J].中国农学通报, 2014, 30(15): 256-260. doi: 10.11924/j.issn.1000-6850.2013-2513 [9] STAMFORD N P, SILVA A J, FREITAS A D, et al. Effect of Sulphur Inoculated with Thiobacillus on Soil Salinity and Growth of Tropical Tree Legumes[J]. Bioresource Technology, 2002, 81(1): 53-59. doi: 10.1016/S0960-8524(01)00099-2 [10] ANSORI A, GHOLAMI A. Improved Nutrient Uptake and Growth of Maize in Response to Inoculation with Thiobacillus and Mycorrhiza on an Alkaline Soil[J]. Communications In Soil Science and Plant Analysis, 2015, 46(17): 2111-2126. doi: 10.1080/00103624.2015.1048251 [11] VOGET S, LEGGEWIE C, UESBECK A, et al. Prospecting for Novel Biocatalysts in a Soil Metagenome[J]. Applied and Environmental Microbiology, 2003, 69(10): 6235-6242. doi: 10.1128/AEM.69.10.6235-6242.2003 [12] doi: http://onlinelibrary.wiley.com/doi/10.1016/j.femsec.2004.11.007/full SAUL D J, AISLABIE J M, BROWN C E, et al. Hydrocarbon Contamination Changes the Bacterial Diversity of Soil from Around Scott Base, Antarctica[J]. Fems Microbiology Ecology, 2010, 53(1): 141-155. [13] doi: https://www.researchgate.net/publication/286966267_Glomerospores_A_new_denomination_for_the_spores_of_Glomeromycota_a_group_molecularly_distinct_from_the_Zygomycota GOTO B T, MAIA L C. Glomerospores: a New Denomination for the Spores of Glomeromycota, a Group Molecularly Distinct from the Zygomycota[J]. Mycotaxon, 2006, 96(4): 129-132. [14] ZHANG H, WU X, LI G, et al. Interactions Between Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Fungus (Mortierella sp.) and Their Effects on Kostelelzkya Virginica Growth and Enzyme Activities of Rhizosphere and Bulk Soils at Different Salinities[J]. Biology and Fertility Of Soils, 2011, 47(5): 543-554. doi: 10.1007/s00374-011-0563-3 [15] 翟凤艳, 刘英杰, 李玉.枝孢属、钉孢属及柱隔孢属真菌内蒙新记录种[J].西北农业学报, 2011, 20(4): 1-6. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201104002.htm [16] 黄谷, 刘娜, 李梦臻. 中国南方炭角菌属的分类研究[C/OL]. 北京: 中国菌物协会, 中国菌物学会第六届会员代表大会(2014年学术年会)暨贵州省食用菌产业发展高峰论坛会议摘要, 2014: 31[2016-01-07]. http://xueshu.baidu.com/s?wd=paperuri%3A%282debce01c29fa20480031cf999ba9dc2%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fcpfd.cnki.com.cn%2FArticle%2FCPFDTOTAL-ZGVL201407001030.htm&ie=utf-8&sc_us=841757835380156037. [17] 魏巍, 许艳丽, 刘金波, 等.土壤镰孢菌Real-Time QPCR定量方法的建立及应用[J].大豆科学, 2010, 29(4): 655-658, 662. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201004026.htm [18] WU Z Q, FAN X L, YANG T, et al. New Record of Setomelanomma Holmii on Picea Crassifolia in China Based on Morphological and Molecular Data[J]. Mycotaxon, 2014, 128(1): 105-111. doi: 10.5248/128.105