-
设(S,+,·)是(2,2)-型代数,其中“+”和“·”是S上的二元运算.若S满足:
(ⅰ) (S,+)和(S,·)都是半群;
(ⅱ) (S,+,·)满足等式x(y+z)≈xy+xz和(x+y)z≈xz+yz,
则称(S,+,·)是半环.因此,半环可以看作是满足分配律的同一集合上的两个半群.半群的格林关系在其理论的发展中有着非常重要的作用,而半环的乘法导出半群和加法导出半群都有各自的格林关系,因此,对半环的乘法导出半群、加法导出半群以及整个半环上的格林关系的研究是很有意义的.文献[1-3]对幂等元半环上的格林关系进行了的研究,并借助幂等元半环的格林关系研究了这类半环簇的
$\mathscr{L}$ -子簇和$\mathscr{D}$ -子簇,得到了许多重要的结论.设S是满足下列附加恒等式的半环:
则对任意的a∈S,都有
且
因此,半环S的乘法导出半群(S,·)是完全正则半群.显然,满足(1),(2),(3)这三个附加恒等式的所有半环作成一个簇,记为V.用符号
$\mathop {\mathscr{L}}\limits^ + $ ,$\mathop {\mathscr{R}}\limits^ + $ 和$\mathop {\mathscr{D}}\limits^ + $ 分别表示半环S的加法导出半群(S,+)上的格林$\mathscr{L}$ ,$\mathscr{R}$ 和$\mathscr{D}$ 关系,用符号$\dot {\mathscr{L}}$ ,$\dot {\mathscr{R}}$ 和$\dot {\mathscr{D}}$ 分别表示半环S的乘法导出半群(S,·)上的格林$\mathscr{L}$ ,$\mathscr{R}$ 和$\mathscr{D}$ 关系.设S∈V.由文献[4]可知,S的加法导出半群(S,+)和乘法导出半群(S,·)上的
$\mathop {\mathscr{L}}\limits^ + $ 和$\dot {\mathscr{L}}$ 分别定义为:由文献[4]可知,完全正则半群的每个H-类都是群,Ha表示a所在的H-类,a0表示群Ha的单位元.并且每一个完全正则半群S都是完全单半群的半格S=(Y,Sα),这里Y与S/
$\mathscr{J}$ 同构,Sα是S的$\mathscr{J}$ -类.且有引理1 设S=(Y,Sα)是完全正则半群,a∈Sα,b∈Sβ,其中α≤β,则有:
(ⅰ) a0=(aba)0;
(ⅱ) a
$\mathscr{L}$ ba,a$\mathscr{R}$ ab;(ⅲ) a=a(ba)0=(ab)0a.
引理2 设S=(Y,Sα)是完全正则半群,则
$\mathscr{D}$ =$\mathscr{J}$ 是S上的同余关系.因此,对任意的S∈V,
$\dot {\mathscr{D}}$ 是(S,·)上的同余关系,$\mathop {\mathscr{D}}\limits^ + $ 是(S,+)上的同余关系.并且很容易验证,$\dot {\mathscr{D}}$ 也是(S,+,·)上的半环同余关系.本文主要对簇V中半环上的格林关系进行研究,刻画下列各种关系,并证明由这些关系所决定的半环簇都是V的子簇,最后得到这些子簇之间的Mal'cev积:
这里Δ和∇分别表示(S,+,·)上的恒等同余和泛同余.
引理3 对任意的S∈V,下列等式成立:
证 设S∈V.则由文献[5]的命题1.5.11,易知等式(4)-(7)中每个等式的右侧包含在等式的左侧中.因此,我们只需证明反包含关系.下面我们只证明等式(4),其它等式可类似地证明.
要证
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ ⊆$\mathop {\mathscr{D}}\limits^ + $ $\dot {\mathscr{L}}$ $\mathop {\mathscr{D}}\limits^ + $ ,我们需要证$\dot {\mathscr{L}}$ $\mathop {\mathscr{D}}\limits^ + $ $\dot {\mathscr{L}}$ ⊆$\mathop {\mathscr{D}}\limits^ + $ $\dot {\mathscr{L}}$ $\mathop {\mathscr{D}}\limits^ + $ .假设对任意a,b∈S,a$\dot {\mathscr{L}}$ $\mathop {\mathscr{D}}\limits^ + $ $\dot {\mathscr{L}}$ b.则存在u,v∈S,使得a$\dot {\mathscr{L}}$ u$\mathop {\mathscr{D}}\limits^ + $ v$\dot {\mathscr{L}}$ b.因为$\mathop {\mathscr{D}}\limits^ + $ 是S上的同余且a$\dot {\mathscr{L}}$ u$\mathop {\mathscr{D}}\limits^ + $ v,于是有又因为u
$\mathop {\mathscr{D}}\limits^ + $ v$\dot {\mathscr{L}}$ b,故有进一步,由
$\dot {\mathscr{L}}$ 是(S,·)上的右同余,a$\dot {\mathscr{L}}$ u和b$\dot {\mathscr{L}}$ v,我们有因此,
这就证明了
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ ⊆$\mathop {\mathscr{D}}\limits^ + $ $\dot {\mathscr{L}}$ $\mathop {\mathscr{D}}\limits^ + $ .引理4 设S∈V,则对任意的a,b∈S,我们有
(ⅰ) a(
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ )b当且仅当$\mathop {\mathscr{D}}\limits^ + $ abn-1=$\mathop {\mathscr{D}}\limits^ + $ a和$\mathop {\mathscr{D}}\limits^ + $ ban-1=$\mathop {\mathscr{D}}\limits^ + $ b;(ⅱ) a(
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{L}}\limits^ + $ )b当且仅当$\mathop {\mathscr{L}}\limits^ + $ abn-1=$\mathop {\mathscr{L}}\limits^ + $ a和$\mathop {\mathscr{L}}\limits^ + $ ban-1=$\mathop {\mathscr{L}}\limits^ + $ b;(ⅲ) a(
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{R}}\limits^ + $ )b当且仅当$\mathop {\mathscr{R}}\limits^ + $ abn-1=$\mathop {\mathscr{R}}\limits^ + $ a和$\mathop {\mathscr{R}}\limits^ + $ ban-1=$\mathop {\mathscr{R}}\limits^ + $ b;(ⅳ) a(
$\mathop {\mathscr{L}}\limits^ + $ ∨$\dot {\mathscr{D}}$ )b当且仅当$\mathop {\mathscr{L}}\limits^ + $ abn-1an-1=$\mathop {\mathscr{L}}\limits^ + $ a和$\mathop {\mathscr{L}}\limits^ + $ ban-1bn-1=$\mathop {\mathscr{D}}\limits^ + $ a.证 设S∈V.我们只证明(ⅰ),其它情况类似地可证.
若a,b∈S使得a(
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ )b,则由等式(4)可知,存在u,v∈S使得a$\mathop {\mathscr{D}}\limits^ + $ u$\dot {\mathscr{L}}$ v$\mathop {\mathscr{D}}\limits^ + $ b.因为$\mathop {\mathscr{D}}\limits^ + $ 是(S,·)上的同余且a$\mathop {\mathscr{D}}\limits^ + $ u,于是有又由u
$\dot {\mathscr{L}}$ v$\mathop {\mathscr{D}}\limits^ + $ b,可得因此
这就证明了
我们可类似地证明
反过来,如果对任意的a,b∈S,都有
则有
因此,由(4)式可得a(
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ )b.由引理3和引理4,我们可得下面的结论:
定理1 设S∈V,则有
(ⅰ) S满足
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ =∇当且仅当对任意的a,b∈S,$\mathop {\mathscr{D}}\limits^ + $ abn-1=$\mathop {\mathscr{D}}\limits^ + $ a,即S满足下列等式:(ⅱ) S满足
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{L}}\limits^ + $ =∇当且仅当对任意的a,b∈S,$\mathop {\mathscr{L}}\limits^ + $ abn-1=$\mathop {\mathscr{L}}\limits^ + $ a,即S满足下列等式:(ⅲ) S满足
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{R}}\limits^ + $ =∇当且仅当对任意的a,b∈S,$\mathop {\mathscr{R}}\limits^ + $ abn-1=$\mathop {\mathscr{R}}\limits^ + $ a,即S满足下列等式:(ⅳ) S满足
$\mathop {\mathscr{L}}\limits^ + $ ∨$\dot {\mathscr{D}}$ =∇当且仅当对任意的a,b∈S,$\mathop {\mathscr{L}}\limits^ + $ abn-1an-1=$\mathop {\mathscr{L}}\limits^ + $ a,即S满足下列等式:由定理1可知,下列半环类的集合都构成簇V的子簇:
我们分别用
${\mathit{\boldsymbol{\tilde L}}_{{d_1}}},{\mathit{\boldsymbol{\tilde L}}_{{l_1}}},{\mathit{\boldsymbol{\tilde L}}_{{r_1}}}$ 和$\mathit{\boldsymbol{\tilde L}}_{{d_1}}^*$ 来表示上述子簇.另一方面,我们用下列符号表示上面四个子簇的对偶子簇:定理2 设S∈V,则
(ⅰ) S满足
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ =Δ当且仅当半环S的乘法导出半群(S,·)是右正则纯正群并,S的加法导出半群(S,+)是半格,即S满足下列等式:(ⅱ) S满足
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{L}}\limits^ + $ =Δ当且仅当半环S的乘法导出半群(S,·)是右正则纯正群并,S的加法导出半群(S,+)是右正则带,即S满足等式(9)和下列等式:(ⅲ) S满足
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{R}}\limits^ + $ =Δ当且仅当半环S的乘法导出半群(S,·)是右正则纯正群并,S的加法导出半群(S,+)是左正则带,即S满足等式(9)和下列等式:(ⅳ) S满足
$\mathop {\mathscr{L}}\limits^ + $ ∨$\dot {\mathscr{D}}$ =Δ当且仅当半环S的乘法导出半群(S,·)是半格,S的加法导出半群(S,+)是右正则带,即S满足等式(10)和下列等式:我们用
${\mathit{\boldsymbol{\tilde L}}_d},{\mathit{\boldsymbol{\tilde L}}_l},{\mathit{\boldsymbol{\tilde L}}_r}$ 和$\mathit{\boldsymbol{\tilde L}}_d^*$ 分别表示下列四个半环类的集合:下面我们将证明
${\mathit{\boldsymbol{\tilde L}}_d},{\mathit{\boldsymbol{\tilde L}}_l},{\mathit{\boldsymbol{\tilde L}}_r}$ 和$\mathit{\boldsymbol{\tilde L}}_d^*$ 是半环簇V的子簇.我们首先证明下面的定理:定理3 (ⅰ)
${{\mathit{\boldsymbol{\tilde L}}}_d} = {{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}} \circ {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ (ⅱ)
${{\mathit{\boldsymbol{\tilde L}}}_l} = {{\mathit{\boldsymbol{\tilde L}}}_{{l_1}}} \circ {{\mathit{\boldsymbol{\tilde L}}}_{{l_0}}}$ ;(ⅲ)
${{\mathit{\boldsymbol{\tilde L}}}_r} = {{\mathit{\boldsymbol{\tilde L}}}_{{r_1}}} \circ {{\mathit{\boldsymbol{\tilde L}}}_{{r_0}}}$ ;(ⅳ)
$\mathit{\boldsymbol{\tilde L}}_d^* = \mathit{\boldsymbol{\tilde L}}_{{d_1}}^* \circ \mathit{\boldsymbol{\tilde L}}_{{d_0}}^*$ .证 我们只需证明(ⅰ),其它等式类似可证.若S∈
${{\mathit{\boldsymbol{\tilde L}}}_d}$ ,则且对任意的u∈S,有ρu∈
${{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}}$ .对任意的a,b∈S,由$\dot {\mathscr{L}}$ ⊆ρ和${{\dot L}_{ab}} = {{\dot L}_{{b^{n - 1}}ab}}$ ,我们有即
由此可知,S/ρ满足等式(9).对任意的a,b∈S,由
$\mathop {\mathscr{D}}\limits^ + $ ⊆ρ和$\mathop {\mathscr{D}}\limits^ + $ a+b=$\mathop {\mathscr{D}}\limits^ + $ b+a,可得因此S/ρ满足等式(8).故由定理2的(ⅰ)可知,
$S \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}} \circ {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ .反过来,如果
$S \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}} \circ {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ ,则对任意的u∈S,存在ρ∈Con(S),使得${\rho _u} \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}}$ 和$S/\rho \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ .对任意的u∈S,由于${\rho _u} \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}}$ ,于是有因为
$S/\rho \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ ,则有S/ρ满足等式(8),(9).从而因此
定理4
${{\mathit{\boldsymbol{\tilde L}}}_d}$ 是由下列等式确定的V的子簇:证 若
$S \in {{\mathit{\boldsymbol{\tilde L}}}_d}$ ,则ρ=$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ ∈Con(S),这里对任意的u∈S,${\rho _u} \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_1}}}$ 且$S/\rho \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ .因为$S/\rho \in {{\mathit{\boldsymbol{\tilde L}}}_{{d_0}}}$ ,由定理2的(ⅰ)可知,对任意的a,b∈S,都有ρba=ρan-1ba.因此,对任意的c∈S,有由定理1的(ⅰ)可得
因此S满足等式(11)-(14).
反过来,设S∈V且S满足等式(11)-(14).假设对任意的a,b∈S,有a(
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ )b.则存在c,d∈S使得a$\mathop {\mathscr{D}}\limits^ + $ c$\dot {\mathscr{L}}$ d$\mathop {\mathscr{D}}\limits^ + $ b.我们首先证明$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ 是(S,+)上的同余.由等式(11)和(12),对任意的w∈S,有进一步,因为c
$\dot {\mathscr{L}}$ d,于是有类似地可证
由于
$\mathop {\mathscr{D}}\limits^ + $ 是S上的同余,我们有和
因此,由(4)式可得:
其次,我们证明
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ 是(S,·)上的同余.事实上,由等式(13)和(14),我们有又因为c
$\dot {\mathscr{L}}$ d,我们有通过交换c和d,类似地可得
因为
$\mathop {\mathscr{D}}\limits^ + $ 是S上的同余,我们有故由(4)式可得
因而
$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ 是(S,·)上的左同余.最后,因为$\dot {\mathscr{L}}$ 是(S,·)上的右同余且$\mathop {\mathscr{D}}\limits^ + $ 是S上的同余,我们有$\dot {\mathscr{L}}$ ∨$\mathop {\mathscr{D}}\limits^ + $ 是S上的同余.类似的,我们可推导出下列结果.结果的证明省略.
定理5
${{\mathit{\boldsymbol{\tilde L}}}_l}$ 是的由下列等式确定的V的子簇:定理6
${{\mathit{\boldsymbol{\tilde L}}}_r}$ 是的由下列等式确定的V的子簇:定理7
$\mathit{\boldsymbol{\tilde L}}_d^*$ 是由下列等式确定的V的子簇:
Green's Relations in Semirings Satisfying Some Identities
-
摘要: 研究了乘法导出半群是完全正则半群,加法导出半群是幂等元半群的半环上的格林关系,分别给出了$\dot {\mathscr{L}}$∨$\mathop {\mathscr{D}}\limits^ + $,$\dot {\mathscr{L}}$∨$\mathop {\mathscr{L}}\limits^ + $,$\dot {\mathscr{L}}$∨$\mathop {\mathscr{R}}\limits^ + $和$\mathop {\mathscr{L}}\limits^ + $∨$\dot {\mathscr{D}}$是同余关系的充分必要条件,证明了由上述同余关系所决定的半环类都是簇,并给出了上述簇的Mal'cev积分解.Abstract: Green's relations in a semiring whose mulitiplicative reduct is a completely regular semigroup and whose additive reduct is an idempotent semigroup are studied. The sufficient and necessary conditions for $\dot {\mathscr{L}}$∨$\mathop {\mathscr{D}}\limits^ + $, $\dot {\mathscr{L}}$∨$\mathop {\mathscr{L}}\limits^ + $, $\dot {\mathscr{L}}$∨$\mathop {\mathscr{R}}\limits^ + $ and $\mathop {\mathscr{L}}\limits^ + $∨$\dot {\mathscr{D}}$ being congruence relations are given, that the classes of semirings which are determined by the above Green's relations are varieties is proved, and the Mal'cev products of the above varieties are obtained.
-
Key words:
- variety /
- semiring /
- Green's relation /
- congruence .
-
[1] doi: https://core.ac.uk/display/12843925 PASTIJN F, ZHAO X Z. Green's D-Relation for the Multiplicative Reduct of an Idempotent Semiring [J]. Arch Math (Brno), 2000, 36: 77-93. [2] doi: https://www.researchgate.net/publication/264545139_D-Subvarieties... ZHAO X Z, GUO Y Q, SHUM K P. D-Subvarieties of the Variety of Idempotent Semirings [J]. Algebra Colloq., 2002, 9(1): 15-28. [3] doi: http://pavleck.net/bookinfo/l-subvarieties-of-the-variety-of-idempotent-semirings.pdf/ ZHAO X Z, SHUM K P, GUO Y Q. L-Subvarieties of the Variety of Idempotent Semirings [J]. Algebra Universalis, 2001, 46(1-2): 75-96. [4] PETRICH M, REILLY N R. Completely Regular Semigroups [M]. New York: Wiley, 1999. [5] HOWIE J M. Fundamentals of Semigroup Theory [M]. Oxford: Oxford Science Publication, 1995.
计量
- 文章访问数: 1100
- HTML全文浏览数: 756
- PDF下载数: 49
- 施引文献: 0