-
设1≤q≤p<∞.如果一个函数f∈Llocq且满足
则称其属于Morrey空间Mqp,其中B表示
${\mathbb{R}^n}$ 中的一个开球.众所周知,Morrey空间是文献[1]为了研究二阶椭圆型偏微分方程的解的局部性质而引入的.作为一个有用的工具,它在调和分析和偏微分方程中都扮演着重要角色[2-4].近几十年来,文献[5-8]对Morrey型空间进行了研究.例如,文献[5]研究了分数次积分算子在Morrey空间上的性质,得到了Hardy-Littlewood-Sobolev定理;文献[6-8]研究了Hardy-Littlewood极大算子、分数次极大算子、分数次积分算子交换子以及乘子在Morrey型空间上的有界性.
20世纪70年代以来,多线性算子的理论受到了许多学者的关注:文献[9]研究了多线性的Calderón-Zygmund理论;文献[10]系统地完善了多线性的Calderón-Zygmund理论;文献[11-13]研究了多线性的分数次积分算子理论.这些理论在调和分析领域得到了广泛的应用.设0<α<mn且
$m \in {\mathbb{N}^*}$ ,Adams型[5]多线性分数次积分算子Iα,m被定义为其中
$x \in {\mathbb{R}^n}$ ,f=(f1,…,fm).显然,多线性分数次积分算子Iα,m是经典的分数次积分算子Iα的推广.文献[14]证明了多线性分数次积分算子Iα,m在Morrey空间上的有界性,得到如下结果:
设
$m \in {\mathbb{N}^*}$ ,0<α<mn,1<qi≤pi≤∞,i=0,1,…,m.如果则存在正常数C,使得
其中f=(f1,f2,…,fm).
文献[15]介绍了多Morrey空间的定义,并且证明了多Morrey范数比m重Morrey范数的乘积要严格的小,也证明了多线性分数次积分算子在Morrey空间上的有界性,得到的结果比文献[14]中的结果更精确:
设
$m \in {\mathbb{N}^*}$ ,0<α<mn,1<p1,…,pm<∞,p=(p1,…,pm),0<p≤p0<∞,0<q≤q0<∞.如果则存在正常数C,使得
由(1)式和(2)式可知,文献[14-15]考虑了当p0<n/α时,多线性分数次积分算子在Morrey空间上的有界性,那么当p0≥n/α时,可以得到什么结果呢?这就是本文要研究的问题.
A New Endpoint Estimate for Multilinear Fractional Integral Operators on Morrey Type Spaces
-
摘要: 考虑了多线性分数次积分算子Iα,m在Morrey型空间的端点估计.利用Hölder不等式和分环技巧等分析手段,证明了算子Iα,m从$\mathscr{M}$pp0空间到BMO空间是有界的,并且从$\mathscr{M}$pp0空间到${\rm{Li}}{{\rm{p}}_{\alpha - \frac{n}{{{p_{_0}}}}}}$空间也是有界的.
-
关键词:
- 多线性分数次积分算子 /
- 多Morrey空间 /
- BMO空间 /
- Lipschitz空间 /
- 有界性
Abstract: Endpoint estimates for the multilinear fractional integral operator Iα, m on Morrey type spaces are discussed. Using the methods of analysis, such as Hölder inequality and the method of dividing ring, the authors prove that operator Iα, m is bounded from $\mathscr{M}$pp0 spaces to BMO spaces and from $\mathscr{M}$pp0 spaces to ${\rm{Li}}{{\rm{p}}_{\alpha - \frac{n}{{{p_{_0}}}}}}$ spaces.-
Key words:
- multilinear fractional integral operator /
- multi-Morrey space /
- BMO space /
- Lipschitz space /
- boundedness .
-
[1] MORREY C. On the Solutions of Quasi-Linear Elliptic Partial Differential Equations [J]. Transactions of the American Mathematical Society, 1938, 43(1): 126-166. doi: 10.1090/S0002-9947-1938-1501936-8 [2] TAYLOR M. Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations [J]. Communications in Partial Differential Equations, 1992, 17(9-10): 1407-1456. doi: 10.1080/03605309208820892 [3] OLSEN P. Fractional Integration, Morrey Spaces and a Schrödinger Equation [J]. Communications Partial Differential Equations, 1995, 20(11-12): 2005-2055. doi: 10.1080/03605309508821161 [4] KUKAVICA I. Regularity for the Navier-Stokes Equations with a Solution in a Morrey Space [J]. Indiana University Mathematics Journal, 2008, 57(6): 2843-2860. doi: 10.1512/iumj.2008.57.3628 [5] ADAMS D. A Note on Riesz Potentials [J]. Duke Mathematical Journal, 1975, 42(4): 765-778. doi: 10.1215/S0012-7094-75-04265-9 [6] doi: http://www.tandfonline.com/doi/abs/10.1080/17476933.2010.534793?tab=permissions CHIARENZA F, FRASCA M. Morrey Spaces and Hardy-Littlewood Maximal Functions [J]. Rend Mat Applizioni, 1987, 7(31): 273-279. [7] doi: http://www.cnki.com.cn/Article/CJFDTOTAL-DBSX199704006.htm DING Y. A Characterization of BMO Via Commutators for Some Operators [J]. Northeastern Mathematical Journal, 1997, 13(4): 422-432. [8] GILLES P, RIEUSSET L G. Multipliers and Morrey Spaces [J]. Potential Analysis, 2013, 38(3): 741-752. doi: 10.1007/s11118-012-9295-8 [9] doi: https://www.researchgate.net/publication/316933368_On_Commutators... COIFMAN R R, MEYER Y. On Commutators of Singular Integrals and Bilinear Singular Integrals [J]. Transactions of the American Mathematical Society, 1975, 212(OCT): 315-331. [10] GRAFAKOS L, TORRES R. Multilinear Calderón-Zygmund Theory [J]. Advances in Mathemtics, 2002, 165(1): 124-164. doi: 10.1006/aima.2001.2028 [11] GRAFAKOS L. On Multilinear Fractional Integrals [J]. Studia Mathematical, 1992, 102(1): 49-56. doi: 10.4064/sm-102-1-49-56 [12] doi: http://www.cnki.com.cn/Article/CJFDTOTAL-DBSX199704006.htm KENIG C E, STEIN E M. Multilinear Estimates and Fractional Integration [J]. Mathematial Research Leterst, 1999, 6(1): 1-15. [13] GRAFAKOS L, KALTON N. Some Remarks on Multilinear Maps and Interpolation [J]. Mathematische Annalen, 2001, 319(1): 151-180. doi: 10.1007/PL00004426 [14] doi: http://www.journals.cambridge.org/abstract_S1446788708000724 TANG L. Endpoint Estimates for Multilinear Fractional Integrals [J]. Journal of the Australian Mathematical Society, 2008, 84(3): 419-429. [15] IIDA T, SATO E, SAWANO Y et al. Sharp Bouds for Multilinear Fractional Integral Operators on Morrey Type Spaces [J]. Positivity, 2012, 16(2): 339-358. doi: 10.1007/s11117-011-0129-5 [16] JOHN F, NIRENBERG L. On Functions of Bounded Mean Oscillation [J]. Communications on Pure Applied Mathematics, 1961, 14(3): 415-426. doi: 10.1002/(ISSN)1097-0312
计量
- 文章访问数: 934
- HTML全文浏览数: 621
- PDF下载数: 28
- 施引文献: 0