-
Steiner对称化是为了证明等周不等式而引入的一种概念[1]. 160年来,Steiner对称化已成为解决与等周相关的几何不等式的基本工具[2-5],并且在最近的很多工作中扮演着重要的角色[6-13]. 19世纪70年代,数学家开始寻找函数不等式的几何证明,由此凸体的Steiner对称化推广到Sobolev空间中函数的Steiner对称化.本文的目的是给出凸函数Steiner对称化的一个等价特征.和经典函数Steiner对称化的定义不同,这个新的特征并不依赖于函数水平集的Steiner对称化,而是给出了函数Steiner对称化的明确的分析表达式,因此更有利于证明函数形式的不等式.
令Ω是n维欧式空间
$ \mathbb{R} $ n中的开凸子集,Ω|u表示Ω在u⊥上的正交投影.对于x′∈u⊥,如果令Ωx′表示集合{t∈$ \mathbb{R} $ :x′+tu∈Ω},则Ω关于方向u∈Sn-1的Steiner对称化定义为其中|Ωx′|表示Lebesgue测度.如果对于任意的x,y∈Ω和0≤λ≤1,有
则函数f:Ω→
$ \mathbb{R} $ 被称为凸函数.如果$ \underset{x\in \mathit{\Omega} , x\to \partial \mathit{\Omega} }{\mathop{\text{lim}}}\, $ f(x)=+∞,则函数被称为强制的.f的上图定义为epif={(x,y)∈
$ \mathbb{R} $ n+1:x∈Ω,y≥f(x)}.经典的函数Steiner对称化是利用水平集的Steiner对称化定义的,定义如下:定义1 对于强制的凸函数f:Ω→
$ \mathbb{R} $ 和超平面H=en⊥,对于任意的x=x′+ten,x′∈H,t∈$ \mathbb{R} $ ,f的Steiner对称化Sf定义为其中μ(x′,h)=|{xn∈
$ \mathbb{R} $ :f(x′,xn)≤h}|是f(x′,·)的分布函数.本文给出了强制凸函数的一个等价特征:
定理1 如果f:Ω→
$ \mathbb{R} $ 是强制的凸函数并且H=en⊥,那么对于任意的x=x′+xnen,x′∈H,xn∈$ \mathbb{R} $ ,有(4) 式不依赖于函数f的水平集的测度,而是给出了函数Steiner对称化的一个解析表达式,有利于证明各种函数不等式.
对于凸体K⊂
$ \mathbb{R} $ n,它关于点z∈$ \mathbb{R} $ n的极体定义为对应凸体的定义,定义对数凹函数ϕ=e-f,ϕ:Ω→(0,∞)关于点z∈
$ \mathbb{R} $ n的极函数定义为为了更好地理解(6)式,先看经典的Legendre变化:对于函数f:
$ \mathbb{R} $ n→$ \mathbb{R} $ ,它关于点z∈$ \mathbb{R} $ n的Legendre变换定义为根据(6)式和(7)式,如果ϕ(x)=e-f(x),那么
凸体的Blaschke-Santalo不等式最早由文献[14]证明,后面被文献[15-16]推广到更一般的函数情形.最近,文献[17]给出了一个新的直接证明.根据文献[14]中关于中心对称凸体的Santalo不等式的证明,我们证明了函数形式的关于偶的凸函数的Blaschke-Santalo不等式.
定理2 如果f:Ω→(0,∞)是偶函数并且满足0<∫e-f<∞,那么
我们首先研究一维的情况.如果f:
$ \mathbb{R} $ →[0,∞)是强制的一维凸函数,那么根据(4)式,有引理1 如果f:
$ \mathbb{R} $ →[0,∞)是强制的凸函数,那么Sf是偶函数,并且对于任意的h∈$ \mathbb{R} $ ,有证 首先,我们证明Sf是偶的.对于任意的x∈
$ \mathbb{R} $ ,根据(10)式可得接下来,我们将证明对于任意的x>0,Sf(0)=inff,并且存在x′∈
$ \mathbb{R} $ ,使得令x=0,根据(10)式可得
一方面,对于x∈
$ \mathbb{R} $ ,由于f是强制的凸函数,故存在x′∈$ \mathbb{R} $ ,使得令Gx(λ)是关于λ∈[0, 1]的函数
对于任意的λ∈[0, 1],选择
$ {{x}_{1}}=\frac{{{x}'}}{2} $ ,可得因此
另一方面,我们将证明存在λ0∈[0, 1],使得Gx(λ0)=f(x′).由于f是定义在
$ \mathbb{R} $ 上的凸函数,根据文献[18]的定理1.5.2,f的右导数f′r和左导数f′l存在并且满足f′l≤f′r.由于f(x′)=f(x′-2x)且x>0,可得f′r(x′)≥0并且f′r(x′-2x)≤0,因此如果
并且令
则
如果
那么
因此这时对于任意的λ0∈[0, 1],(18)式总是成立的.根据(18)式,我们定义
根据(18)式,Φλ0在x1=x′/2处的右导数Φλ0,r和左导数Φλ0,l满足:
根据(16),(20),(21),(19)式和f(x′)=f(x′-2x),我们可得
综上所述
这表明对于任意的h∈
$ \mathbb{R} $ ,{x∈$ \mathbb{R} $ :Sf(x)>h}={x∈$ \mathbb{R} $ :f(x)>h}.定理1的证明 对于强制的凸函数f:Ω→
$ \mathbb{R} $ ,令根据引理1,对于任意的x′∈Ω|en,f1(x′,xn)是关于xn的偶函数.因此,f1的上图epi(f1)关于en⊥对称,因此根据凸体的Steiner对称化和引理1可得
根据文献[19]中的(13)式可得
根据(23)式和(24)式,可得f1=Sf.
引理2 如果f:
$ \mathbb{R} $ n→[0,∞)是偶的凸函数,并且0<∫e-f<∞,那么∫e-Lf ≤∫e-L(Sf).证 对于f和xn∈
$ \mathbb{R} $ ,我们定义新的函数fxn(x′)=f(x′,xn),其中x′∈en⊥.根据函数Steiner对称化的定义,对于x′=x′1+x′2,其中x′,x′1,x′2∈en⊥,我们可得取λ=
$ \frac{1}{2} $ ,根据sup sup(A+B)≤sup sup A+sup sup B,有根据(25)式和x′1,x′2的任意性,可得
其中exp(f)表示ef.根据(25)式和Prekopa-Leindler不等式,我们可得
其中最后一个等式是由于Lf的偶性.因此,根据Fubini定理,原命题成立.
引理3 令h(t)是递增的定义域为[0,∞)的凸函数,并且
$\int_{0}^{\infty } $ e-h(t)dt<∞.令Lh|·|表示函数h(|x|) (x∈$ \mathbb{R} $ n)的Legendre变换,则证 根据球面坐标变换可得
其中dω表示单位球面上的Hausdorff测度.对于任意的x∈
$ \mathbb{R} $ n,令x=txθx,其中:从而
因此可得
对于r∈[0,∞),令:
并且
令
那么
并且对于任意的s,t∈
$ \mathbb{R} $ ,$ {{g}_{1}}\left( s \right){{g}_{2}}(t)\le {{\left( {{g}_{3}}\left( \frac{s}{2}+\frac{t}{2} \right) \right)}^{2}} $ .根据Prekopa-Leindler不等式可得根据(29)式,可得
其中
$ {{\omega }_{n}}=\frac{n\pi \frac{n}{2}}{\mathit{\Gamma} \left( 1+\frac{n}{2} \right)} $ 是欧式单位球的表面积[20-21].定理2的证明 根据引理2和Steiner对称化的积分不变性,可得
对于对数凹函数e-f∈L1(
$ \mathbb{R} $ n),存在一序列方向{ui}i=1∞⊂Sn-1,使得exp(-Su1,…,uif)收敛到径向函数exp(-h(|x|)).根据(31)式和引理3以及L1($ \mathbb{R} $ n)函数的积分连续性可得
An Equivalent Characterization of the Steiner Symmetrization of Convex Functions
-
摘要: 函数Steiner对称化的经典定义是根据函数水平集的Steiner对称化以及函数的分层表示定义的.给出了强制凸函数Steiner对称化的一个解析表达式,它是经典Steiner对称化的一个等价特征.这个新的定义不依赖于函数水平集的Steiner对称化,而是将定义转化为一维的类似抛物线函数的Steiner对称化,这更有助于函数不等式的证明.函数的Blaschke-Santalo不等式是一个重要的函数形式的仿射等周不等式,它的几何背景是凸体的Blaschke-Santalo不等式.首先利用Steiner对称化的新的定义,证明了对于任意的强制凸函数经过一次Steiner对称化后积分值变小了;然后利用Prekopa-Leindler不等式证明了径向函数的Blaschke-Santalo不等式.由于任何凸函数经过不断的Steiner对称化总可以在Lp范数意义下收敛于它的对称递减重排,而对称递减重排即为径向函数,因此证明了函数形式的Blaschke-Santalo不等式.
-
关键词:
- 函数的重排 /
- Steiner对称化 /
- 强制凸函数 /
- Blaschke-Santalo不等式
Abstract: The classical definition of the functional Steiner symmetrization is defined according to the Steiner symmetrization of level sets of the function and the layer cake representation. In this paper, we give an analytic expression for the Steiner symmetrization of coercive convex functions, which is an equivalent characterization of the classical Steiner symmetrization. This new definition does not depend on the Steiner symmetrization of the level sets; instead, it converts the definition into the symmmetrization of a one-dimensional parabolic function, which is more helpful to prove the functional inequality. The functional Blaschke-Santalo inequality is an important functional affine isoperimetric inequality. Its geometric background is the Blaschke-Santalo inequality of convex bodies. In this paper, using the new definition, we first prove that the integral value of the convex function is reduced with respect to Steiner symmetrization and then, using Prekopa-Leindler inequality, we prove the Blaschke-Santalo inequality of radial function. By continuous Steiner symmetrizations, a convex function can always be converged to its symmetric decreasing rearrangement in the sense of Lp norm, and the symmetric decreasing rearrangement is a radial function, so the functional Blaschke-Santalo inequality is proved. -
-
[1] doi: http://www.ams.org/mathscinet-getitem?mr=430963 FALCONER K J. A Result on the Steiner Symmetrization of a Compact Set[J]. J London Math Soc, 1976, 14(2):385-386. [2] GARDNER R J. The Brunn-Minkowski Inequality[J]. Bull Amer Math Soc, 2002, 39(3):355-405. doi: 10.1090/S0273-0979-02-00941-2 [3] GARDNER R J. Geometric Tomography[M]. New York:Cambridge University Press, 2006. [4] doi: http://www.ams.org/proc/0000-000-00/S0002-9939-2017-13683-1/ LIN Y J. Smoothness of the Steiner Symmetrization[J]. Proc Amer Math Soc, 2018, 146(1):345-357. [5] LIN Y J. Affine Orlicz Polya-Szego Principle for Log-Concave Functions[J]. J Funct Anal, 2017, 273(10):3295-3326. doi: 10.1016/j.jfa.2017.08.017 [6] CIANCHI A, FUSCO N. Functions of Bounded Variation and Rearrangements[J]. Arch Ration Mech Anal, 2002, 165(1):1-40. doi: 10.1007/s00205-002-0214-9 [7] BIANCHI G, KLAIN D A, LUTWAK E, et al. A Countable Set of Directions is Sufficient for Steiner Symmetrization[J]. Adv in Appl Math, 2011, 47(4):869-873. doi: 10.1016/j.aam.2011.04.005 [8] BURCHARD A. Steiner Symmetrization is Continuous in W1, pJ]. Geom Funct Anal, 1997, 7(5):823-860. doi: 10.1007/s000390050027 [9] CIANCHI A, CHLEBIK M, FUSCO N. The Perimeter Inequality Under Steiner Symmetrization:Cases of Equality[J]. Ann of Math, 2005, 162(1):525-555. doi: 10.4007/annals [10] GARDNER R J. Symmetrals and X-Rays of Planar Convex Bodies[J]. Arch Math (Basel), 1983, 41(2):183-189. doi: 10.1007/BF01196876 [11] KLARTAG B. An Isomorphic Version of the Slicing Problem[J]. J Funct Anal, 2005, 218(2):372-394. doi: 10.1016/j.jfa.2004.05.003 [12] KLARTAG B, Milman V D. Isomorphic Steiner Symmetrization[J]. Invent Math, 2003, 153(3):463-485. doi: 10.1007/s00222-003-0290-y [13] CIANCHI A, LUTWAK E, YANG D, et al. Affine Moser-Trudinger and Morrey-Sobolev inequalities[J]. Calc Var Partial Differential Equations, 2009, 36(3):419-436. doi: 10.1007/s00526-009-0235-4 [14] MEYER M, PAJOR A. On the Blaschke Santalo Inequality[J]. Arch Math, 1990, 55(1):82-93. doi: 10.1007/BF01199119 [15] FRADELIZI M, MEYER M. Some Functional Forms of Blaschke-Santalo Inequality[J]. Math Z, 2007, 256(2):379-395. doi: 10.1007/s00209-006-0078-z [16] doi: https://www.researchgate.net/publication/232023630_The_Santalo_point_of_a_function_and_a_functional_form_of_the_Santalo_inequality ARTSTEIN-AVIDAN S, KLARTAG B, MILMAN V. The Santalo Point of a Function, and a Functional Form of the Santalo Inequality[J]. Mathematika, 2004, 51(2):33-48. [17] LEHEC J. A Direct Proof of the Functional Santalo Inequality[J]. C R Math Acad Sci Paris, 2009, 347(1-2):55-58. doi: 10.1016/j.crma.2008.11.015 [18] SCHNEIDER R. Convex Bodies:The Brunn-Minkowski Theory[M]. 2 th ed. New York:Cambridge University Press, 2014. [19] doi: https://www.sciencedirect.com/science/article/pii/S0001870805001568 CIANCHI A, FUSCO N. Steiner Symmetric Extremals in Polya-Szego Type Inequalities[J]. Adv Math, 2006, 203(2):637-728. [20] 朱华, 王世莉, 姚纯青, 等.常曲率空间中具有平行平均曲率向量的伪脐子流形[J].西南大学学报(自然科学版), 2016, 38(10):74-78. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201610011&flag=1 [21] 朱保成, 徐文学. Wills猜想的强化形式[J].西南师范大学学报(自然科学版), 2016, 41(10):20-25. doi: http://www.cqvip.com/QK/80996A/201603/668154496.html -
计量
- 文章访问数: 1471
- HTML全文浏览数: 952
- PDF下载数: 128
- 施引文献: 0