-
20世纪30年代Elton[1]最初提出了食物网的概念以及研究方法,从此拉开了食物网的研究序幕.随后,学者们广泛地研究了食物网的特征,包括稳定性、复杂性和动力学等特点[2-4],如1991年Hastings和Powell[3]在一个简单的三种群食物链模型中发现了混沌行为;Fussmann和Heber[4]认为食物网系统中营养级越多,混沌的预测就越困难,而且自然食物网的结构特征在本质上可能降低种群动态出现混沌的可能性.因此食物网模型动力学行为的研究,对理解自然生态系统的特性具有关键的作用.
食物网模型是种群动力学中最重要的模型之一[5-6].近年来,具有功能反应的食物网模型引起了人们的广泛关注[5-10],如Baek[5]研究了两种功能反应下的三种群食物网动力系统模型,讨论了系统在平衡点处的稳定性,并根据极限环存在的条件确定了系统的稳定性条件,通过数值模拟展示了Hopf分岔等行为;Raw等人[7]提出并讨论了一个具有防御机制的三种群食物网模型,并发现了许多复杂的动力学行为,如Hopf分岔、拟周期分岔和混沌等.
食物网模型的动力学行为研究是种群动力学的前沿问题之一[7, 11].食物网系统的动力学行为对于揭示种群随时间演化的分布规律有着非常重要的生态学意义.因此,本文基于Hasting-Powell模型[3]构建了Holling-Ⅱ型三种群食物网动力系统模型,其表达式为:
其中:Fi(U)表示Holling-II型功能反应函数,其表达式为
式中:X,Y,Z是种群密度; T是时间;R是种群X的内在增长率;K是环境对种群X的最大承载能力;E1是种群Y捕食种群X的转化率;E2是种群Z捕食种群X的转化率;E3是种群Z捕食种群Y的转化率;I1是种群Y的死亡率;I2是种群Z的死亡率;Ai(i=1,2,3)是捕获率;Bi是饱和率.
从生态学的角度来讲,参数R,K,Ii,Ei,Ai和Bi的值均不小于零,还应注意到种群密度也应不小于零.因此,方程(1)应该限制在
$ \mathbb{R}_{+}^{3}=\left\{(X, Y, Z) \in \mathbb{R}^{3} : X \geqslant 0, Y \geqslant 0, Z \geqslant 0\right\}$ 的状态空间.为了减少方程(1)中参数的数量,对其无量纲化,引入:利用(3)式替换(1)式中的相应变量,可以得到无量纲的食物网系统:
其中:
Study on Hopf Bifurcation in a Three-Species Food Web Model with Holling-Ⅱ Functional Response
-
摘要: 构建了Holling-Ⅱ型三种群食物网模型,利用Jacobian矩阵、Routh-Hurwitz判据、Hopf分岔和中心流形等理论分别讨论了系统的局部渐进稳定性和Hopf分岔的发生条件.通过数值模拟,展示了食物网系统的Hopf分岔行为,揭示了种群动态随外界参数条件的变化以及随时间演化的分布规律.Abstract: We investigated a three-species food web model with Holling-Ⅱ functional response. Jacobian matrix, Routh-Hurwitz criteria, Hopf bifurcation theorem and central manifold theorem were used to analyze local asymptotic stability and to determine Hopf bifurcation condition for the food web system. The Hopf bifurcation of the system was demonstrated by numerical simulations. The dynamics behaviors revealed change of population dynamics with variations of the parameters as well as time evolution.
-
Key words:
- food web model /
- local asymptotic stability /
- Hopf bifurcation /
- numerical simulations .
-
[1] ELTON C S. Animal Ecology[M]. London:Sidgwick and Jackson, 1927. [2] POLIS G A, STRONG D R. Food Web Complexity and Community Dynamics[J]. The American Naturalist, 1996, 147(5):813-846. doi: 10.1086/285880 [3] HASTINGS A, POWELL T. Chaos in a Three-Species Food Chain[J]. Ecology, 1991, 72(3):896-903. doi: 10.2307/1940591 [4] FUSSMANN G F, HEBER G. Food Web Complexity and Chaotic Population Dynamics[J]. Ecology Letters, 2002, 5(3):394-401. doi: 10.1046/j.1461-0248.2002.00329.x [5] BAEK H. On the Dynamical Behavior of a Two-Prey One-Predator System with Two-Type Functional Responses[J]. Kyungpook Mathematical Journal, 2013, 53(4):647-660. doi: 10.5666/KMJ.2013.53.4.647 [6] SEN M, BANERJEE M, MOROZOV A. Bifurcation Analysis of a Ratio-Dependent Prey-Predator Model with the Allee Effect[J]. Ecological Complexity, 2012, 11:12-27. doi: 10.1016/j.ecocom.2012.01.002 [7] doi: http://cn.bing.com/academic/profile?id=8faad72895395f6c309d320ad58b9d78&encoded=0&v=paper_preview&mkt=zh-cn RAW S N, MISHRA P, KUMAR R, et al. Complex Behavior of Prey-Predator System Exhibiting Group Defense:a Mathematical Modeling Study[J]. Chaos Solitons & Fractals, 2017, 100:74-90. [8] ZHAO M, LV S J. Chaos in a Three-Species Food Chain Model with a Beddington-DeAngelis Functional Response[J]. Chaos Solitons & Fractals, 2009, 40(5):2305-2316. [9] 谢文鑫, 王稳地.具有竞争的Leslie型捕食者-食饵模型的定性分析[J].西南大学学报(自然科学版), 2009, 31(3):18-21. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=xnnydxxb200903005&flag=1 [10] 李雅芝, 熊梅.具基因突变的周期脉冲捕食-食饵系统的动力学行为研究[J].西南大学学报(自然科学版), 2018, 40(3):82-88. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201803012&flag=1 [11] HSU S B, RUAN S G, YANG T H. Analysis of Three Species Lotka-Volterra Food Web Models with Omnivory[J]. Journal of Mathematical Analysis and Applications, 2015, 426(2):659-687. doi: 10.1016/j.jmaa.2015.01.035 [12] ROBINSON R C.动力系统导论[M].韩茂安, 邢业朋, 毕平, 译.北京: 机械工业出版社, 2007. [13] KUZNETSOV Y A. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995. [14] 尤里·阿·库兹涅佐夫.应用分支理论基础[M].金成桴, 译.北京: 科学出版社, 2010. [15] MISRA O P, SINHA P, SINGH C. Stability and Bifurcation Analysis of a Prey-Predator Model with Age Based Predation[J]. Applied Mathematical Modelling, 2013, 37(9):6519-6529. doi: 10.1016/j.apm.2013.01.036