-
设X为无限维可分的Banach空间,U,V⊂X为任意非空开集.如果存在n≥0,使得Tn(U)∩V≠∅,则称算子T是拓扑传递的.如果T⊕T是拓扑传递的,则称T是弱混合的.如果存在N≥0,使得对∀n≥N,有Tn(U)∩V≠∅,则称T是混合的.设
$A \subset \mathbb{N}_{+}$ ,如果序列(nk)k⊂A单增,且$\sup\limits_{k \geqslant 1}(n_{k+1}-n_{k} )<\infty$ ,则称A为syndetic集. A为syndetic集等价于$\mathbb{N}_{+} \backslash A$ 中的连续整数区间的长度是有限的.类似地,$M \subset \mathbb{R}_{+}$ 是syndetic集等价于M的补集$\mathbb{R}_{+} \backslash M$ 包含的区间长度是有限的.文献[1]提出了频繁超循环算子这一概念.设$A \subset \mathbb{N}_{+}$ ,A的下密度被定义为:如果存在x∈X(频繁超循环向量),使得dens(N(x,U))>0,则称T为频繁超循环的.关于它的更多研究结果详见文献[2-4].文献[5]首次提出了C0-半群的超循环性.如果X上的算子族(Tt)t≥0满足:T0=I;对∀s,t>0有Tt+s=TsTt;对∀x∈X,t≥0,有
$\lim\limits_{s \rightarrow t} T_{s} x=T_{t} x$ ,则称(Tt)t≥0为C0-半群.如果存在t≥0,使得Tt(U)∩V≠∅,则称(Tt)t≥0是拓扑传递的.如果(Tt⊕Tt)t≥0是拓扑传递的,则称(Tt)t≥0是弱混合的.如果存在t0≥0,使得对∀t≥t0,有Tt(U)∩V≠∅,则称(Tt)t≥0是混合的.文献[6]将频繁超循环性引入到C0-半群.设$M \subset \mathbb{R}_{+}$ 为可测集,M的下密度定义为其中μ为
$\mathbb{R}_{+}$ 上的Lebesgue测度.令(Tt)t≥0为C0-半群,如果存在x∈X(频繁超循环向量),使得dens{R(x,U)}>0,其中$R(x, U)=\left\{t \in \mathbb{R}_{+} : T_{t}(x) \in U\right\}$ ,则称(Tt)t≥0为频繁超循环半群.学者们常常利用偏微分方程的解半群来探索PDE的本质.因此一些特定的PDE的解半群的性质研究得到了更多的青睐[7-8],在生物、物理、化学、工程等领域都有重要的应用[9-11].
The (Weakly) Mixing Property of Frequently Hypercyclic Semigroups
-
摘要: 对于单个算子而言,所有频繁超循环算子都是弱混合的,满足频繁超循环准则的算子都是拓扑混合的.在单个频繁超循环算子的研究成果的基础上,再结合单个算子弱混合和混合的研究方法,进一步对单个频繁超循环算子和频繁超循环半群的相关性质进行了对比分析,主要讨论了频繁超循环C0-半群的相关性质.首先,把Erd s-Sárk zy定理推广到了在实数集上,给出了判定正实数集合是syndetic集的一个充分条件,即已知一个正实数集合有正的下密度,则这个集合的差集是syndetic的.其次,证明了任意频繁超循环C0-半群是弱混合的.最后,给出了判定C0-半群是混合的一个充分条件.利用泛函分析的方法,证明了满足频繁超循环准则的C0-半群是混合的.Abstract: For a single operator, frequently hypercyclic operators are weakly mixing, and operators satisfying the frequent hypercyclcity criterion are topologically mixing. Based on the results in the researches of single frequently hypercyclic operators, we use the research methods of weak mixing and mixing to make a comparative analysis of the related properties of frequently hypercyclic operators with frequently hypercyclic semigroups, with the focus of discussion placed on the properties of frequently hypercyclic C0-semigroups. First, we generalize the Erdös-Sárközy theorem to real number sets, and give a sufficient condition for judging positive real number sets to be syndetic sets, that is, if a known positive real number set has positive lower density, then its difference set is syndetic. Next, we prove that any frequent hypercyclic C0-semigroup is weak mixing. Finally, we give a sufficient condition for C0-semigroupsto be mixing. With the method of functional analysis, we prove that C0-semigroups satisfying the frequent hypercyclcity criterion are mixing.
-
Key words:
- frequent hypercyclicity /
- C0-semigroup /
- weak mixing /
- frequent hypercyclicity criterion /
- mixing .
-
[1] BAYART F, GRIVAUX S. Frequently Hypercyclic Operators[J]. Transactions of the American Mathematical Society, 2006, 358(11):5083-5117. doi: 10.1090/S0002-9947-06-04019-0 [2] BAYART F, GRIVAUX S. Hypercyclicité:Le Rôle Du Spectre Ponctuel Unimodulaire[J]. Comptes Rendus Mathematique, 2004, 338(9):703-708. doi: 10.1016/j.crma.2004.02.012 [3] BONILLA A, GROSSE-ERDMANN K G. Frequently Hypercyclic Operators and Vectors-Erratum[J]. Ergodic Theory and Dynamical Systems, 2007, 27(2):383-404. doi: 10.1017/S014338570600085X [4] BAYART F, GRIVAUX S. Invariant Gaussian Measures for Operators on Banach Spaces and Linear Dynamics[J]. Proceedings of the London Mathematical Society, 2007, 94(1):181-210. doi: 10.1112/plms/pdl013 [5] SCHAPPACHER W, DESCH W, WEBB G F. Hypercyclic and Chaotic Semigroups of Linear Operators[J]. Ergodic Theory and Dynamical Systems, 1997, 17(4):793-819. doi: 10.1017/S0143385797084976 [6] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211790290/ BADEA C, GRIVAUX S. Unimodular Eigenvalues, Uniformly Distributed Sequences and Linear Dynamics[J]. Advances in Mathematics, 2007, 211(2):766-793. [7] 陈仕洲.一类Lienard型p-Laplacian方程周期解的存在性和唯一性[J].西南师范大学学报(自然科学版), 2015, 40(1):6-11. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201501002 [8] 姜瑞廷, 唐春雷.带有Hardy-Sobolev-Maz'ya项及Hardy-Sobolev临界指数的半线性椭圆方程正解的存在性[J].西南大学学报(自然科学版), 2016, 38(6):50-55. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201606009 [9] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f936309fc172e8c7e49390a6173552aa CONEJERO J A, MARTÍNEZ-GIMÉNEZ F, PERIS A, et al. Chaotic Asymptotic Behaviour of the Solutions of the Lighthill-Whitham-Richards Equation[J]. Nonlinear Dynamics, 2016, 84(1):127-133. [10] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fb74c6bc06fa111f86cc317f0457d565 HUNG C H, CHANG Y H. Frequently Hypercyclic and Chaotic Behavior of Some First-Order Partial Differential Equation[J]. Abstract and Applied Analysis, 2013, 2013:1-6. [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66d65253ab5a2c58d85de767f329d5d6 CONEJERO J A, LIZAMA C, MURILLO-ARCILA M. Chaotic Semigroups from Second Order Partial Differential Equations[J]. Journal of Mathematical Analysis and Applications, 2017, 456(1):402-411. [12] BERNAL-GONZALEA L, GROSSE-ERDMANN K G. The Hypercyclicity Criterion for Sequences of Operators[J]. Studia Mathematica, 2003, 157(1):17-32. doi: 10.4064/sm157-1-2 [13] doi: http://cn.bing.com/academic/profile?id=668b8502153fa97297f366bd3183767b&encoded=0&v=paper_preview&mkt=zh-cn LEON-SAAVEDAR F. Notes about the Hypercyclicity Criterion[J]. Mathematica Slovaca, 2003, 3(3):313-319. [14] GROSSE-ERDMANN K G, PERIS A. Frequently Dense Orbits[J]. Comptes Rendus Mathematique, 2005, 341(2):123-128. doi: 10.1016/j.crma.2005.05.025 [15] BERNAL-GONZALEA L, GROSSE-ERDMANN K G. Existence and Nonexistence of Hypercyclic Semigroups[J]. Proceedings of the American Mathematical Society, 2007, 135(3):755-766. doi: 10.1090/S0002-9939-06-08524-8 [16] MANGINO E M, PERIS A. Frequently Hypercyclic Semigroups[J]. Studia Mathematica, 2011, 202(3):227-242. doi: 10.4064/sm202-3-2
计量
- 文章访问数: 1278
- HTML全文浏览数: 1038
- PDF下载数: 103
- 施引文献: 0