留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

关于含参可行集映射的下半连续性的一个记注

上一篇

下一篇

李高西, 李季, 杨洁. 关于含参可行集映射的下半连续性的一个记注[J]. 西南大学学报(自然科学版), 2020, 42(7): 139-142. doi: 10.13718/j.cnki.xdzk.2020.07.013
引用本文: 李高西, 李季, 杨洁. 关于含参可行集映射的下半连续性的一个记注[J]. 西南大学学报(自然科学版), 2020, 42(7): 139-142. doi: 10.13718/j.cnki.xdzk.2020.07.013
Gao-xi LI, Ji LI, Jie YANG. A Note on the Lower Semicontinuity of Parameter-Containing Feasible Set Mappings[J]. Journal of Southwest University Natural Science Edition, 2020, 42(7): 139-142. doi: 10.13718/j.cnki.xdzk.2020.07.013
Citation: Gao-xi LI, Ji LI, Jie YANG. A Note on the Lower Semicontinuity of Parameter-Containing Feasible Set Mappings[J]. Journal of Southwest University Natural Science Edition, 2020, 42(7): 139-142. doi: 10.13718/j.cnki.xdzk.2020.07.013

关于含参可行集映射的下半连续性的一个记注

  • 基金项目: 国家自然科学基金项目(11901068);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0456);重庆市教委科研项目(KJQN201800810);重庆工商大学高层次人才科研启动项目(1856009, 1756006)
详细信息
    作者简介:

    李高西(1988-), 男, 副教授, 主要从事双层规划理论算法及应用的研究 .

    通讯作者: 李季, 讲师; 
  • 中图分类号: O224

A Note on the Lower Semicontinuity of Parameter-Containing Feasible Set Mappings

  • 摘要: 讨论了含参可行集映射在分别满足Cottle,Abadie,Guignard和Constraint Rank(CR)约束规范时的下半连续性.给出了在满足Cottle约束规范时的下半连续性定理,并通过反例证明了该含参可行集映射在Abadie,Guignard和CR这3种约束规范下不一定具有下半连续性,这些结论可用于非线性规划和半无限规划.
  • 加载中
  • 图 1  K(x)函数图

  • [1] FIACCO A V.Sensitivity Analysis for Nonlinear Programming Using Penalty Methods[J].Mathematical Programming, 1976, 10(1): 287-311. doi: 10.1007/BF01580677
    [2] FIACCO A V, ISHIZUKA Y.Sensitivity and Stability Analysis for Nonlinear Programming[J].Annals of Operations Research, 1990, 27(1): 215-235. doi: 10.1007/BF02055196
    [3] GAL T, WOLF K.Stability in Vector Maximization--A Survey[J].European Journal of Operational Research, 1986, 25(2): 169-182. doi: 10.1016/0377-2217(86)90083-4
    [4] LI G, WAN Z, ZHAO X.Optimality Conditions for Bilevel Multiobjective Programs[J].Pacific Journal of Optimization, 2017, 13(3): 421-441.
    [5] LI G X, WAN Z P, CHEN J W, et al.Optimality Conditions for Pessimistic Trilevel Optimization Problem with Middle-Level Problem Being Pessimistic[J].Journal of Nonlinear Sciences and Applications, 2016, 9(6): 3864-3878. doi: 10.22436/jnsa.009.06.34
    [6] 郑跃, 万仲平, 吕一兵.非线性二层规划问题的全局优化方法[J].系统科学与数学, 2012, 32(5): 513-521.. doi: http://d.old.wanfangdata.com.cn/Periodical/xtkxysx-zw201205001
    [7] 陈加伟, 邹云志.广义投影下F隐变分不等式解的存在性[J].数学学报, 2010, 53(2): 375-384. doi: 10.3969/j.issn.1005-3085.2010.02.023
    [8] 唐国吉, 汪星, 叶明露.混合变分不等式的一个投影型方法[J].应用数学学报, 2016, 39(4): 574-585. doi: http://d.old.wanfangdata.com.cn/Periodical/yysxxb201604010
    [9] SHAPIRO A.Sensitivity Analysis of Nonlinear Programs and Differentiability Properties of Metric Projections[J].SIAM Journal on Control and Optimization, 1988, 26(3): 628-645. doi: 10.1137/0326037
    [10] WANG X, LI W, LI X S, et al.Stability for Differential Mixed Variational Inequalities[J].Optimization Letters, 2014, 8(6): 1873-1887. doi: 10.1007/s11590-013-0682-x
    [11] 欧小庆, 李金富, 刘佳, 等.一类约束多目标优化问题弱有效解的一个择一定理[J].西南大学学报(自然科学版), 2017, 39(1): 109-113. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2017.01.017
    [12] 廖伟, 赵克全.向量优化中真有效性的一个注记[J].西南大学学报(自然科学版), 2013, 35(11): 92-95. doi: http://xbgjxt.swu.edu.cn/article/id/jsuns20120578
    [13] 迟晓妮, 刘三阳, 张晓伟.求解二次锥规划的非精确不可行内点法[J].吉林大学学报(理学版), 2007, 45(5): 743-747. doi: 10.3321/j.issn:1671-5489.2007.05.010
    [14] LÓPEZ M A, CÁNOVAS M J, PARRA J.Stability of the Feasible Set for Linear Inequality Systems: a Carrier Index Set Approach[J].Linear Algebra and Its Applications, 2002, 357(1-3): 83-105. doi: 10.1016/S0024-3795(02)00371-3
    [15] ZHAO K Q, YANG X M.A Unified Stability Result with Perturbations in Vector Optimization[J].Optimization Letters, 2013, 7(8): 1913-1919. doi: 10.1007/s11590-012-0533-1
    [16] ROCKAFELLAR R T, WETS R J B.Variational Analysis[M].Berlin: Springer Berlin Heidelberg, 1998.
    [17] BERTSEKAS D P.Nonlinear Programming[M].Belmont: Athena Scientific, 1999.
    [18] MASAO F.非线性最优化基础[M].林贵华, 译.北京: 科学出版社, 2011.
  • 加载中
图( 1)
计量
  • 文章访问数:  715
  • HTML全文浏览数:  715
  • PDF下载数:  1
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-27
  • 刊出日期:  2020-07-20

关于含参可行集映射的下半连续性的一个记注

    通讯作者: 李季, 讲师; 
    作者简介: 李高西(1988-), 男, 副教授, 主要从事双层规划理论算法及应用的研究
  • 1. 重庆工商大学 数学与统计学院, 重庆 400067
  • 2. 重庆城市管理职业学院 财经学院, 重庆 401331
  • 3. 经济社会应用统计重庆市重点实验室, 重庆 400067
基金项目:  国家自然科学基金项目(11901068);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0456);重庆市教委科研项目(KJQN201800810);重庆工商大学高层次人才科研启动项目(1856009, 1756006)

摘要: 讨论了含参可行集映射在分别满足Cottle,Abadie,Guignard和Constraint Rank(CR)约束规范时的下半连续性.给出了在满足Cottle约束规范时的下半连续性定理,并通过反例证明了该含参可行集映射在Abadie,Guignard和CR这3种约束规范下不一定具有下半连续性,这些结论可用于非线性规划和半无限规划.

English Abstract

  • 稳定性分析是数学规划理论的基础[1-13],而含参可行集映射的上、下半连续性又是稳定性分析的关键所在.令$X \subset {\mathbb{R}^m},\mathit{\boldsymbol{x}} \in X,I = \{ 1,2, \cdots ,p\} $为指标集,对任意的iIgi${\mathbb{R}^m} \times {\mathbb{R}^n} \to \mathbb{R}$是实值函数.本文主要讨论下述含参不等式约束集映射(1)的半连续性:

    若对任意的iIgi$\{ \mathit{\boldsymbol{x}}\} \times {\mathbb{R}^n}$上均为下半连续函数,则容易证明K在点x处是上半连续的,但K的下半连续性却不易得到.文献[14]研究了下述含参线性不等式约束集映射

    其中:T是指标集,参数θ属于任意度量空间Θat$\mathit{\Theta} \to {\mathbb{R}^m}{b_t},\mathit{\Theta} \to \mathbb{R}$.给出了该含参不等式约束集映射的下半连续性条件.目前少有文章讨论诸如(1)式这种一般约束集映射的半连续性,本文主要讨论在常见的约束规范下参数不等式约束集映射K的下半连续性.

  • $U \subseteq {\mathbb{R}^m},V \subseteq {\mathbb{R}^n},M:U \to {2^V}$为集值映射,M的下半连续性定义如下:

    定义1[15-16] 假设对任意的xUM(x)为紧集合,若对任意收敛到x的序列{xn},{xn}∈U,任意的yM(x)存在序列{yn},满足当n→∞时{yn}→y,且当n足够大时有ynM(xn),则称M在点x处是下半连续的.

    对任意的xXy$\mathbb{R}^n$

    下面回顾一些常见的约束规范:

    定义2[17] gi(xy)(iI(xy))关于y是凸的,称Slater约束规范在点x处满足,若存在y,使得gi(xy)<0,∀iI.

    定义3[17] 对于yK(x)称Cottle约束规范在点(xy)满足,若存在向量d$ \mathbb{R}^n$满足${\nabla _\mathit{\boldsymbol{y}}}{g_i}{(\mathit{\boldsymbol{\overline x}} ,\mathit{\boldsymbol{\overline y}} )^{\rm T}}\mathit{\boldsymbol{d}}<0,\forall i \in I(\mathit{\boldsymbol{\overline x}} ,\mathit{\boldsymbol{\overline y}} )$.

    定义4[17] 对于yK(x)称Abadie约束规范在点(xy)处满足,若CK(x)(y)⊆TK(x)(y).

    定义5[17] 称Constraint Rank约束规范在点(xy)处满足,若存在(xy)的一个开邻域V,使得对任意指标集I1I(xy),$\{ {\nabla _\mathit{\boldsymbol{y}}}{g_i}(\mathit{\boldsymbol{x}},\mathit{\boldsymbol{y}}):j \in {I_1}\} $V上有相同的秩.

  • 对于含参可行集映射(1),文献[18]中有如下定理1.

    定理1[18] 假设在x的某邻域内K是一致有界的,对任意iIgi$\{\mathit{\boldsymbol{\overline x}} \} \times { \mathbb{R}^n}$上均为连续函数,对于任意的xXgi关于y是凸的且在x处满足Slater约束规范,则K在点x处是下半连续的.

    注1 即使对∀xXgi是关于y的凸函数,Slater约束规范也不是约束集映射满足下半连续性的必要条件,具体例子见例1.

    例1 令X=[-100, 0],Y=(0,10]×(0,10],xXy=(y1y2)∈Y.集值映射K(x)定义如下:

    简单计算可得K(x)={(y1y2)∈Yy1+y2=1-x}.容易验证在任意点xX处,参数不等式约束集映射(2)均不满足Slater约束规范.因为对在X中收敛到x的任意序列{xn}和yK(x),存在${{y_n}} = \left( {\frac{{{y_1}(1 - {x_n})}}{{{y_1} + {y_2}}},\frac{{{y_2}(1 - {x_n})}}{{{y_1} + {y_2}}}} \right)$,显然{yn}∈K(xn)且{yn}收敛到y,所以K在点x处下半连续.

    定理2表明Cottle约束规范可以保证参数不等式约束集映射的下半连续性.

    定理2 假设

    (ⅰ)对任意的iIgiX×Y上的连续可微函数,

    (ⅱ)对任意的yK(x),参数不等式约束集映射(1)在点(xy)处满足Cottle约束规范,则K在点x处下半连续.

     对于在X中收敛到x的任意序列{xn},以及任意的yK(x),考虑如下两种情形:

    (a) 若gi(xy)<0,∀iI,由gi的连续性可知,对任意收敛到y的序列{yn},存在N${ \mathbb{Z}_ + }$,使得对于∀nN,∀iI,有gi(xnyn)<0,即是ynK(xn).

    (b) 若I(xy)≠Ø,则yK(x),且对任意iI(xy),以及任意的z$ \mathbb{R}^n$都有如下等式成立:

    因为参数不等式约束集映射(1)在点(xy)处满足Cottle约束规范,所以存在z$ \mathbb{R}^n$使得

    因此对$\begin{array}{*{20}{l}} {{\alpha _n} = \sqrt {\left\| {{\mathit{\boldsymbol{x}}_n} - \mathit{\boldsymbol{\overline x}} } \right\|} } \end{array}$存在N1${ \mathbb{Z}_ + }$使得对任意的nN1

    由(a)易知存在N2$ { \mathbb{Z}_ + }$使得对任意的nN2

    所以对任意的n>max{N1N2},有ynK(xn).即K在点x处是下半连续的.

    注2 Cottle约束规范并不是参数不等式约束集映射满足下半连续性的必要条件,具体实例见例2.

    例2 令X=[0,1 000],xX,集值映射K(x)定义如下

    容易验证Cottle约束规范在任意点(xy),yK(x)处均不满足.因为对任意的xXK(x)={0},所以容易验证K在点x处是下半连续的.

    注3 Abadie约束规范和CR约束规范不能保证含参不等式约束集映射(1)的下半连续性,具体实例见例3.

    例3 对任意的x$ \mathbb{R}$考虑如下参数不等式约束集映射

    观察可得不等式约束集(3)等价于

    简单计算可得,对任意的yK(0)={(y1y2)∈$ \mathbb{R}$2$y_1^2$-y2=0},有

    因为对任意的dCK(0)(y),α>0有y2=$y_1^2$d2=2y1d1

    所以dTK(0)(y),即是参数不等式约束集映射(3)在x=0处满足Abadie约束规范.接下来将证明对任意的yK(0),映射(3)在点(0,y)处满足CR约束规范.事实上令

    经过简单计算可得

    因此容易验证对任意的yK(0),存在(0,y)的一个开邻域,使得对每个指标集I1I(0,y),{▽ygj(xy):jI1}在V上有相同的秩.即是对任意yK(0),CR约束规范在点(0,y)处满足.

    图 1不难看出在定点y=(-0.1,0.01)∈K(0)处,对任意收敛到0的序列{xn},不存在收敛到y的序列{yn}使得当n充分大时,有ynK(xn).因此K在0点非下半连续.

参考文献 (18)

目录

/

返回文章
返回