-
生长素是植物生长发育过程中重要的激素之一,在植物生命周期中发挥重要的调控作用,如参与植物的器官发生和形态建成、衰老、顶端优势及组织分化等[1-2].与生长素信号转导相关的3类主要蛋白组分即生长素/吲哚乙酸蛋白(auxin/indoleacetis acids proteins,Aux/IAAs)、生长素响应因子(auxin response factors,ARFs)和SCF复合体[3].其中Aux/IAA基因家族是生长素信号转导途径中重要的作用因子,在生长素的作用下Aux/IAA泛素化降解,Aux/IAA蛋白对ARF的抑制作用也随之解除,从而启动生长素信号途径.
目前,Aux/IAA基因家族已在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、杨树(Populus trichocarpa)、玉米(Zea mays)、高粱(Sorghum vulgare)、番茄(Solanum lycopersicum)、苹果(Malus domestica)、黄瓜(Cucumis sativus)、粗山羊草(Aegilops tauschii)和马铃薯(Solanum tuberosum)等[4-13]多个物种中进行了详细分析,研究表明该基因家族在植物果实发育中扮演着十分重要的作用.
在实际生产中,施用外源赤霉素能够诱导植物单性结实[14-16].枇杷果实为假果,果肉主要由花托发育而来.三倍体枇杷由于配子母细胞减数分裂异常,难以形成正常的花粉,造成花粉败育而不能正常授粉受精,其自然结实率极低,在施用外源赤霉素后坐果率明显升高.研究表明,生长素和赤霉素是促进坐果和果实生长发育的主要激素,生长素主要是促进细胞分裂,赤霉素促进细胞伸长.而Aux/IAAs基因是生长素精确反馈调节的关键环节,因此探讨赤霉素处理后生长素响应基因的变化对于果实坐果具有重要的意义.
本文以三倍体枇杷A322为研究对象,研究GA3处理后枇杷坐果期4种内源激素的变化,克隆了6个Aux/IAA基因家族的cDNA片段,进一步分析了这些基因在三倍体坐果期的表达情况,以期为三倍体无籽枇杷坐果机制研究提供理论参考.
Phytohormone Content Detection and Expression Analysis of the Aux/IAA Gene Family DuringFruitSet of Triploid Loquat
-
摘要: 将三倍体枇杷坐果期材料分为子房和其他部分,测定其4种内源植物激素的含量,并对6个Aux/IAA基因家族的时空表达特点进行了初步分析.结果表明:对于IAA来说,GA3处理后子房内IAA质量分数明显高于其他部分,并在处理后第5 d和第7 d出现了2个高峰,推测其质量分数升高可能与外源GA3处理有关,高质量分数的IAA替代受精作用从而诱导枇杷坐果.荧光定量PCR分析发现,GA3处理后6个基因的表达量都具有变化,IAA6,IAA8,IAA10在子房中的表达量明显高于其他部分,IAA9在子房和其他部分的表达量相当,IAA11和IAA20在子房中的表达量低于其他部分.此外,在外源GA3处理前期,子房中IAA9的表达量与内源IAA质量分数变化趋势一致,推测内源IAA质量分数升高,诱导IAA9表达上调,从而诱导枇杷果实坐果. IAA8在GA3处理3 d后表达量开始升高,并显著高于对照组,推测其功能可能与IAA9相似.
-
关键词:
- 枇杷 /
- 生长素 /
- 坐果 /
- 基因克隆 /
- Aux/IAA基因家族
Abstract: In a study reported in this paper, thefruit set material of triploid loquatwas divided into two parts: ovary and other parts, and the contentsof four endogenous phytohormones were determined, and the temporal and spatial expression characteristics of six genes of theAux/IAA family were analyzed. The results showed that the content of IAA in the ovary was significantly higher than that in other parts after exogenous GA3 treatment, andtwo peaks were detected 5 and 7 days after the treatment. It wasspeculatedthatthe increase of IAA might be related to exogenous GA3 treatment, and the high concentration of IAA replaced fertilization to initiate triploid loquat fruit set. Real-time PCR analysis showed that the expression of all the six genes changed after GA3 treatment. The expression level of IAA6, IAA8 and IAA10 in ovary was significantly higher than in other parts, IAA9 expression level was similar in ovary and other parts, while IAA11 and IAA20 expressed less in the ovary than in other parts. In addition, at theearly stage of exogenous GA3 treatment, the expression of IAA9 in the ovary was consistent with the change in endogenous IAA content. The increase in endogenous auxin content resulted in the up-regulationof IAA9 expression, thereby inducing the loquat fruit set. In the ovary, IAA8 expression started to increase 3 daysafter exogenous GA3 treatmentand was significantly higher than that of the control, suggesting that thefunction of IAA8 was probablysimilar to that of IAA9.-
Key words:
- loquat /
- fruit set /
- auxin /
- gene cloning /
- Aux/IAA gene family .
-
表 1 引物序列、退火温度及产物大小
基因 引物(5′→3′) 退火温度/℃ 产物大小/bp EjIAA6-F TTGGTGGTGGTGGTGGTGGTAA 60 721 EjIAA6-R GGAGCAAGTCCGTTATCCTCAGAC EjIAA8-F TCAACTCCACCTGACTGAAGCAATC 60 330 EjIAA8-R GCCACCCTACTACTTGTGTCTTGG EjIAA9-F ATGAATGTCGTTAATCGCAGTGTCG 60 504 EjIAA9-R AATCAAGGTGTCTCTGAGCGTCTG EjIAA10-F CACACACCTTGCATTCCCACCTC 60 681 EjIAA10-R ACATCTCCAACCAGCATCCAATCAC EjIAA11-F TGAAGGAGACAGGATGCTCGTTGG 60 129 EjIAA11-R TCCTCCTCCTTCTCCGCCAATC EjIAA20-F TCCTCCTCCTTCTCCGCCAATC 60 642 EjIAA20-R AGCCAGTCTCCTTCTCTGTCTTGAT 表 2 实时定量引物及退火温度和产物大小
基因 引物(5′→3′) 退火温度/℃ 产物大小/bp IAA6 F:GGATGGCCTCCTATCAGCAC
R:AGATTTCGCTTGGTGAGCCA58 125 IAA8 F:ACTCCACCTGACTGAAGCAATC
R:GCTTCCAGGCAACCCTAATCT62 184 IAA9 F:TCAGCAGCAGCAGCGAATAA
R:TGAAAGGTGTCTCTGAGCGTC62 119 IAA10 F:GGGTGAGACTGCTACTGGGT
R:CCCTCTCCGAAGTATTGACCTAT60 148 IAA11 F:CAGGATGCTCGTTGGGGATG
R:CTTATCTTGCTTGCTGCTGCG62 118 IAA20 F:AGGGCTTCGACTTGAACAGC
R:ACTAGTCTTGTCGTGCTCGC62 203 表 3 5种植物激素线性方程及回收率
标准样品 线性回归方程 相关系数(r2) 线性范围/(μg·mL-1) 回收率/% 生长素(IAA) y=0.034 4x-0.378 5 0.999 3 0.1~10 86.4 脱落酸(ABA) y=0.016 1x-3.286 9 0.998 8 0.1~10 62.6 玉米素(ZT) y=0.025 3x-14.291 0 0.994 9 0.1~10 69.1 赤霉素(GA3) y=0.007 5x+13.669 0 0.991 4 0.1~10 71.7 -
[1] DING Z, FRIML J. Auxin Regulates Distal Stem Cell Differentiation in Arabidopsis Roots [J]. PNAS, 2010, 107(26): 12046-12051. doi: 10.1073/pnas.1000672107 [2] CALDERÓN VILLALOBOS L I A, LEE S, DE OLIVEIRA C, et al. A Combinatorial TIR1/AFB-Aux/IAA Co-receptor System for Differential Sensing of Auxin [J]. Nature Chemical Biology, 2012, 8(5): 477-485. doi: 10.1038/nchembio.926 [3] doi: https://www.ncbi.nlm.nih.gov/pubmed/12045271 KEPINSKI S, LEYSER O. Ubiquitination and Auxin Signaling: a Degrading Story [J]. The Plant Cell, 2002, 14(1): 81-95. [4] OVERVOORDE P J, OKUSHIMA Y, ALONSO J M, et al. Functional Genomic Analysis of the AUXIN/INDOLE-3-ACETICACID Gene Family Members in Arabidopsis Thaliana [J]. The Plant Cell, 2005, 17(12): 3282-3300. doi: 10.1105/tpc.105.036723 [5] doi: https://link.springer.com/article/10.1007/s10142-005-0005-0 JAIN M, KAUR N, GARG R, et al. Structure and Expression Analysis of Early Auxin-responsive Aux/IAA Gene Family in Rice (Oryza sativa) [J]. Functional & Integrative Genomics, 2006, 6(1): 47-59. [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000993522 KALLURI U C, DIFAZIO S P, BRUNNER A M, et al. Genome-Wide Analysis of Aux/IAA and ARF Gene Families in Populus trichocarpa [J]. BMC Plant Biology, 2007, 7(1): 1-14. [7] WANG Y J, DENG D X, BIAN Y L, et al. Genome-wide Analysis of Primary Auxin-Responsive Aux/IAA Gene Family in Maize (Zea mays L.) [J]. Molecular Biology Reports, 2010, 37(8): 3991-4001. doi: 10.1007/s11033-010-0058-6 [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a3d2dc4f8aee315cc7e023cbae7716e WANG S K, BAI Y H, SHEN C J, et al. Auxin-related Gene Families in Abiotic Stress Response in Sorghum bicolor [J]. Functional & Integrative Genomics, 2010, 10(4): 533-546. [9] doi: https://link.springer.com/article/10.1007/s00438-012-0675-y WU J, PENG Z, LIU S Y, et al. Genome-Wide Analysis of Aux/IAA Gene Family in Solanaceae Species Using Tomato as a Model [J]. Molecular Genetics and Genomics, 2012, 287(4): 295-311. [10] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002288955 DEVOGHALAERE F, DOUCEN T, GUITTON B, et al. A Genomics Approach to Understanding the Role of Auxin in Apple (Malus x domestica)Fruit Size Control [J]. BMC Plant Biology, 2012, 12(1): 1-15. [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9bf75d29a6d988261f8d56e5a15ddcf6 GAN D F, ZHUANG D, DING F, et al. Identification and Expression Analysis of Primary Auxin-responsive Aux/IAA Gene Family in Cucumber (Cucumis sativus) [J]. Journal of Genetics, 2013, 92(3): 513-521. [12] QIAO L Y, LI X, CHANG Z J, et al. Whole-Genome Sequence Isolation, Chromosome Location, and Characteriza-tion of Primary Auxin-Responsive Aux/IAA Gene Family in Aegilops Tauschii [J]. Acta Agronomica Sinica, 2014, 40(12): 2059. doi: 10.3724/SP.J.1006.2014.02059 [13] GAO J P, CAO X L, SHI S D, et al. Genome-Wide Survey of Aux/IAA Gene Family Members in Potato (Solanum tuberosum): Identification, Expression Analysis, and Evaluation of Their Roles in Tuber Development [J]. Biochemical and Biophysical Research Communications, 2016, 471(2): 320-327. doi: 10.1016/j.bbrc.2016.02.013 [14] doi: https://www.cabdirect.org/cabdirect/abstract/19610302012 DAVISON R M. Fruit-Setting of Apples Using Gibberellic Acid [J]. Nature, 1960, 188(4751): 681-682. [15] doi: https://link.springer.com/article/10.1007/s10725-014-9995-8 NIU Q F, WANG T, LI J Z, et al. Effects of Exogenous Application of GA4+7 and N-(2-chloro-4-pyridyl)-N'-phenylurea on Induced Parthenocarpy and Fruit Quality in Pyrus Pyrifolia 'Cuiguan' [J]. Plant Growth Regulation, 2015, 76(3): 251-258. [16] MESEJO C, YUSTE R, REIG C, et al. Gibberellin Reactivates and Maintains Ovary-Wall Cell Division Causing Fruit Set in Parthenocarpic Citrus Species [J]. Plant Science, 2016, 247: 13-24. doi: 10.1016/j.plantsci.2016.02.018 [17] doi: https://www.researchgate.net/publication/311780807_Transcriptome_Analysis_Reveals_Candidate_Genes_Involved_in_Gibberellin-Induced_Fruit_Setting_in_Triploid_Loquat_Eriobotrya_japonica JIANG S, LUO J, XU F J, et al. Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Setting in Triploid Loquat (Eriobotrya japonica) [J]. Frontiers in Plant Science, 2016, 7(619832): 1924-1935. [18] 李华, 郭启高, 梁国鲁, 等.利用高效液相色谱法同时测定枇杷果实中10种植物激素[J].西南大学学报(自然科学版), 2018, 40(3): 18-25. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2018.03.003 [19] 刘超, 王玲利, 吴頔, 等.枇杷叶片发育基因EjGRF5与启动子克隆及其在不同倍性枇杷中的表达[J].中国农业科学, 2018, 51(8): 1598-1606. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201808017 [20] RUAN YL, PATRICK J W, BOUZAYEN M, et al. Molecular Regulation of Seed and Fruit Set [J]. Trends in Plant Science, 2012, 17(11): 656-665. doi: 10.1016/j.tplants.2012.06.005 [21] SASTRY K K, MUIR R M. Gibberellin: Effect on Diffusible Auxin in Fruit Development [J]. Science, 1963, 140(3566): 494-495. doi: 10.1126/science.140.3566.494 [22] NIU Q F, ZONG Y, QIAN M J, et al. Simultaneous Quantitative Determination of Major Plant Hormones in Pear Flowers and Fruit by UPLC/ESI-MS/MS [J]. Analytical Methods, 2014, 6(6): 1766-1773. doi: 10.1039/C3AY41885E [23] KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis Cytochrome P450 CYP707A Encodes ABA 8'-Hydroxylases: Key Enzymes in ABA Catabolism [J]. The EMBO Journal, 2004, 23(7): 1647-1656. doi: 10.1038/sj.emboj.7600121 [24] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=758f87b58a92dd00b04317feafd6a660 SHEN C J, WANG S K, BAI Y H, et al. Functional Analysis of the Structural Domain of ARF Proteins in Rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2010, 61(14): 3971-3981. [25] FUJITA K, HORIUCHI H, TAKATO H, et al. Auxin-Responsive Grape Aux/IAA9 Regulates Transgenic Arabidopsis Plant Growth [J]. Molecular Biology Reports, 2012, 39(7): 7823-7829. doi: 10.1007/s11033-012-1625-9 [26] WANG H, JONES B, LI Z G, et al. The Tomato Aux/IAA Transcription Factor IAA9 is Involved in Fruit Development and Leaf Morphogenesis [J]. The Plant Cell, 2005, 17(10): 2676-2692. doi: 10.1105/tpc.105.033415 [27] doi: https://academic.oup.com/pcp/article/52/2/283/1907540 SAITO T, ARIIZUMI T, OKABE Y, et al. TOMATOMA: a Novel Tomato Mutant Database Distributing Micro-Tom Mutant Collections [J]. Plant and Cell Physiology, 2011, 52(2): 283-296. [28] 张伟伟, 刘富中, 张映, 等.茄子生长素诱导基因SmIAA19的克隆和分析[J].园艺学报, 2014, 41(11): 2231-2240. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb201411008 [29] JUNG H, LEE D K, CHOI Y D, et al. OsIAA6, a Member of the Rice Aux/IAA Gene Family, is Involved in Drought Tolerance and Tiller Outgrowth [J]. Plant Science, 2015, 236: 304-312. doi: 10.1016/j.plantsci.2015.04.018 [30] 王婧.拟南芥Aux/IAA家族基因IAA8参与花器官发育的研究[D].武汉: 武汉大学, 2012. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&filename=1013209383.nh [31] ARASE F, NISHITANI H, EGUSA M, et al. IAA8 Involved in Lateral Root Formation Interacts with the TIR1 Auxin Receptor and ARF Transcription Factors in Arabidopsis [J]. PLoS One, 2012, 7(8): e43414. doi: 10.1371/journal.pone.0043414 [32] ULMASOV T, HAGEN G, GUILFOYLE T J. Dimerization and DNA Binding of Auxin Response Factors [J]. The Plant Journal, 1999, 19(3): 309-319. doi: 10.1046/j.1365-313X.1999.00538.x [33] doi: http://www.plantcell.org/content/9/11/1963 ULMASOV T, MURFETT J, HAGEN G, et al. Aux/IAA Proteins Repress Expression of Reporter Genes Containing Natural and HighlyActive Synthetic Auxin Response Elements [J]. The Plant Cell, 1997, 9(11): 1963-1971. [34] GOETZ M, VIVIANSMITH A, JOHNSON S D, et al. AUXIN RESPONSE FACTOR8 is a Negative Regulator of Fruit Initiation in Arabidopsis [J]. The Plant Cell, 2006, 18(8): 1873-1886. doi: 10.1105/tpc.105.037192