-
开放科学(资源服务)标识码(OSID):
-
目前,植物病害主要通过化学农药进行防控,该方法虽然耗时短、见效快,但存在易导致环境污染、使植物病原菌产生抗药性等问题[1-2]. 因此,开发对环境绿色安全且能持久有效地防治植物病害的生物防控方法具有重要意义. 其中,益生微生物制剂就是化学杀菌剂的良好替代品[3]. 自1921年Hartely首次利用拮抗真菌防治Pythium debaryanum引起的猝倒病以来,部分益生真菌、放线菌和细菌等微生物被广泛应用于生物防治[4-5]. 芽孢杆菌是土壤和植物相关微生物的优势种群,具有较好的抑制植物病原菌的能力,对环境无毒害作用,且其芽孢抗逆性强,被广泛用于植物病害生物防治[6]. 其中,贝莱斯芽孢杆菌(Bacillus velezensis)是2005年才被报道的一种新型生防菌种[7]. 2016年Dunlap等[8]通过比较基因组学和in silico DNA-DNA杂交手段,将甲基营养型芽孢杆菌(B. methylotrophicus)、解淀粉芽孢杆菌植物亚种(B. amyloliquefaciens subsp. plantarum)和稻生芽孢杆菌(B. oryzicola)归类为贝莱斯芽孢杆菌. 研究表明贝莱斯芽孢杆菌是极具应用潜力的生防细菌,Liu等[9]分离出的B. velezensis D4可以抑制苹果树腐烂病病原菌黑腐皮壳菌(Valsa mali)的生长,分离自番茄根际土壤的B. velezensis Y6菌株对植物病原菌尖孢镰刀菌(Fusarium oxysporum)孢子萌发表现出较强的抑制作用[10].
芽孢杆菌的抑菌机制主要包括拮抗作用、竞争作用和诱导植物抗性等[11]. 拮抗作用是指微生物产生拮抗物质直接抑制或杀死另一种微生物. 芽孢杆菌可产生脂肽类化合物、聚酮类化合物和抗菌蛋白等拮抗物质抑制病原菌生长[12]. 其中,脂肽类化合物由非核糖体肽合成酶(nonribosomal peptide synthetase,NRPS)途径合成,而聚酮类化合物则是由聚酮合酶(polyketide synthase,PKS)途径合成[12]. 脂肽类化合物主要包括3个家族:表面活性素(Surfactin)、丰原素(Fengycin)和伊枯草菌素(Iturin),这类化合物具有很强的抗菌活性[13-14],其主要作用于病原菌细胞膜或细胞壁[15-17]. 李生樟等[18]研究报道B. velezensis 504菌株基因组含有编码脂肽类和聚酮糖类抑菌化合物的基因簇,并能够特异性拮抗黄单胞菌;Jin等[19]报道了B. velezensis S3-1菌株可产生属于丰原素、伊枯草素和表面活性素家族的13种脂肽类抗生素,且能抑制植物病原菌Botryis cinerea生长.
本研究以植物炭疽病菌Colletotrichum sp.为靶标菌,对一株具有广谱抑菌活性的拮抗B. velezensis SWUJ1[20]进行全基因组测序,并对其抑菌物质进行分离纯化,初步探究其抑菌机理,为该菌进一步开发成生防制剂奠定前期研究基础.
Purification and Research of Inhibitory Mechanism of Antagonist Substances from Bacillus velezensis SWUJ1 Strain
-
摘要: 为探究具潜在生物防治作用的贝莱斯芽孢杆菌(Bacillus velezensis SWUJ1)菌株的抑菌机理,通过全基因组测序,寻找该菌潜在的抑菌物质合成基因簇,推测可能合成的抑菌活性产物;并通过检测拮抗菌株发酵滤液热稳定性,初步判断抑菌物质类型,进而结合酸沉淀法和液质联用(LC-MS)和高效液相色谱(HPLC)等方法,对菌株发酵液抑菌活性物质进行分离纯化和鉴定,并测定抑菌组分的最低抑菌浓度(MIC),观察其对病原菌生长的影响. 全基因组分析结果显示:B. velezensis SWUJ1具有13个次级代谢产物合成基因簇,以非核糖体肽合成酶途径合成的脂肽类抗生素为主;拮抗菌活性发酵滤液具有较好的热稳定性. LC-MS分析结果显示:其活性发酵液提取物中含有脂肽类化合物表面活性素、丰原素和伊枯草菌素;经硅胶柱层析、HPLC和凝胶柱层析,获得一单峰组分,其MIC为200 μg/mL,该组分可使病原菌丝扭曲、畸形、肿大.Abstract: To explore the potential antagonistic mechanism of Bacillus velezensis SWUJ1, genome sequencing was conducted to analyze the gene clusters for synthesis of antagonistic substances. Possible types of antagonistic substances were determined by analyzing the thermal stability of B. velezensis SWUJ1 fermentation supernatant. The antagonistic substances from the B. velezensis SWUJ1 fermentation supernatant were isolated, purified and identified. The minimum inhibitory concentration (MIC) of antagonistic substance was determined, and its effect on growth of pathogen was investigated. The genome analysis of B. velezensis SWUJ1 revealed 13 gene clusters for synthesis of secondary metabolites, such as lipopeptide antibiotics synthesized through nonribosomal peptide synthetase pathway. The thermal stability analysis indicated that fermentation supernatant of B. velezensis SWUJ1 has excellent heat stability. LC-MS analysis showed that the B. velezensis SWUJ1 fermentation supernatant contained lipopeptides, such as surfactin, fengycin and iturin. The antimicrobial substance Ⅴ21 with MIC of 200 μg/mL was isolated through silica gel column chromatography, HPLC, and gel column chromatography. Ⅴ21 could make the pathogenic hyphae twisted, deformed, and swollen.
-
Key words:
- Bacillus velezensis /
- antagonistic substance /
- isolation /
- purification /
- inhibitory mechanism .
-
表 1 高效液相色谱设置方法
时间/min 流速/(mL·min-1) 流动相A/% 流动相B/% 0 8 80 20 20 8 0 100 30 8 0 100 表 2 B. velezensis SWUJ1菌株抑菌相关基因统计
基因 基因位置 蛋白* 功能描述 srfAA 336050-346804 Surfactin family lipopeptide synthetase A Surfactin biosynthesis srfAB 346826-357586 Surfactin family lipopeptide synthetase B Surfactin biosynthesis srfAC 357621-361457 Surfactin family lipopeptide synthetase C Surfactin biosynthesis srfAD 361477-362208 External thioesterase TEII Surfactin biosynthesis fenB 1936738-1940541 Fengycin family lipopeptide synthetase E Fengycin biosynthesis fenA 1940561-1951342 Fengycin family lipopeptide synthetase D Fengycin biosynthesis fenE 1951368-1959017 Fengycin family lipopeptide synthetase C Fengycin biosynthesis fenD 1959033-1966730 Fengycin family lipopeptide synthetase B Fengycin biosynthesis fenC 1966756-1974414 Fengycin family lipopeptide synthetase A Fengycin biosynthesis comA 3013468-3014112 Competent response regulator ComA Regulator of Surfactin production comP 3014193-3016544 Sensor histidine kinase ComP Regulator of Surfactin production comX 3016522-3016692 Competence protein ComX Regulator of Surfactin production comQ 3016689-3017597 Competence protein ComQ Regulator of Surfactin production ituC 1876593-1884452 Iturin family lipopeptide synthetase C Iturin biosynthesis ituB 1884536-1900627 Iturin family lipopeptide synthetase B Iturin biosynthesis ituA 1900672-1912620 Iturin family lipopeptide synthetase A Iturin biosynthesis bacA 3616428-3617042 Prephenate decarboxylase Bacilysin biosynthesis bacG 3610327-3611127 Bacilysin biosynthesis oxidoreductase BacG Bacilysin biosynthesis bacF 3611144-3612343 Bacilysin biosynthesis transaminase BacF Bacilysin biosynthesis dhbF 3040244-3047371 Nonribosomal peptide synthetase DhbF Bacillibactin biosynthesis pksD 1693483-1694457 Bacillaene synthase trans-acting acyltransferase Bacillaene biosynthesis pksC 1692477-1693346 Polyketide biosynthesis malonyl-CoA-[acyl-carrier-protein] transacylase Bacillaene biosynthesis pksE 1383024-1385330 Trans-AT polyketide synthase,acyltransferase and oxidoreductase domains Bacillaene biosynthesis 1694459-1696699 2354848-2357106 acpK 1696765-1697013 Polyketide biosynthesis acyl carrier protein Bacillaene biosynthesis pksG 1697065-1698327 Polyketide biosynthesis 3-hydroxy-3-methylglutaryl-CoA synthase-like enzyme PksG Bacillaene biosynthesis pksH 1698324-1699097 Polyketide biosynthesis enoyl-CoA hydratase PksH Bacillaene biosynthesis pksI 1699107-1699856 Polyketide biosynthesis enoyl-CoA hydratase PksI Bacillaene biosynthesis pksJ 1699896-1714850 Polyketide synthase PksJ Bacillaene biosynthesis pksL 1714852-1728258 Polyketide synthase PksL Bacillaene biosynthesis pksM 1728276-1738814 Polyketide synthase PksM Bacillaene biosynthesis pksN 1738804-1755105 Polyketide synthase PksN Bacillaene biosynthesis pksR 1755119-1762576 Polyketide synthase PksR Bacillaene biosynthesis 注:*表示该注释信息来自KEGG数据库. 表 3 B. velezensis SWUJ1菌株次级代谢产物的预测
基因簇a 类型b 基因簇位置c 次级代谢物d 功能e 相似度f 1 NRPS 316165-381233 Surfactin Anti-virus,anti-mycoplasma,anti-tumour 78% 2 PKS-like 919655-960899 Butirosin Anti-bacterial 7% 3 Terpene 1046514-1063672 - - - 4 TransAT-PKS 1363072-1449448 Macrolactin Anti-fungal,anti-bacterial,anti-virus,anti-tumor 100% 5 TransAT-PKS 1672950-1782555 Bacillaene Anti-fungal,anti-bacterial 100% 6 NRPS 1858055-1991039 Fengycin Anti-fungal 100% 7 Terpene 2018280-2040163 - - - 8 Bacteriocin 2086013-2096131 - - - 9 T3PKS 2114271-2155371 - - - 10 TransAT-PKS-like 2270927-2377106 Difficidin - 100% 11 NRPS 2861512-2916408 - - - 12 NRPS 3020244-3072036 Bacillibactin Accumulate and take up iron ions 100% 13 Other 3593534-3634952 Bacilysin Anti-bacterial and Candida albicans 100% 注:a为antiSMASH5.0.0注释的次级代谢物合成基因簇;b为基因簇类型;c为菌株基因组中基因簇的位置;d为基于基因簇可能产生的次级代谢物;e为基因簇合成代谢物的生物活性功能;f为与已知基因簇的相似度. “-”表示未知. -
[1] 黄慧婧, 罗坤. 芽孢杆菌与杀菌剂复配防治植物病害的研究进展[J]. 微生物学通报, 2021, 48(3): 938-947. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202103026.htm [2] 李巧玲, 杨毅, 肖忠, 等. 木香根腐病生防细菌的筛选与鉴定[J]. 西南大学学报(自然科学版), 2020, 42(9): 71-76. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.09.008 [3] MORALES-CEDEÑO L R, OROZCO-MOSQUEDA M D C, LOEZA-LARA P D, et al. Plant Growth-Promoting Bacterial Endophytes as Biocontrol Agents of Pre- and Post-Harvest Diseases: Fundamentals, Methods of Application and Future Perspectives[J]. Microbiological Research, 2021, 242: 126612-1-126612-12. doi: 10.1016/j.micres.2020.126612 [4] 黄曦, 许兰兰, 黄荣韶, 等. 枯草芽孢杆菌在抑制植物病原菌中的研究进展[J]. 生物技术通报, 2010(1): 24-29. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201001008.htm [5] 徐耀波, 谢洁, 潘国庆, 等. 1株抑制铜绿微囊藻生长的放线菌的分离鉴定[J]. 西南大学学报(自然科学版), 2015, 37(10): 57-61. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2015.10.009 [6] KIM S Y, LEE S Y, WEON H Y, et al. Complete Genome Sequence of BacillusVelezensis M75, a Biocontrol Agent Against Fungal Plant Pathogens, Isolated from Cotton Waste[J]. Journal of Biotechnology, 2017, 241: 112-115. doi: 10.1016/j.jbiotec.2016.11.023 [7] doi: http://www.ugr.es/~eps/articles/velezensis.pdf RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, et al. Bacillus Velezensis Sp. Nov., a Surfactant-Producing Bacterium Isolated from the River Vélez in Málaga, Southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(pt 1): 191-195. [8] DUNLAP C A, KIM S J, KWON S W, et al. Bacillus Velezensis is not a Later Heterotypic Synonym of Bacillus Amyloliquefaciens; Bacillus Methylotrophicus, Bacillus Amyloliquefaciens Subsp. plantarum and 'Bacillus Oryzicola' are Later Heterotypic Synonyms of Bacillus Velezensis Based on Phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1212-1217. doi: 10.1099/ijsem.0.000858 [9] doi: http://www.sciencedirect.com/science/article/pii/S1049964421002292 LIU R H, LI J Y, ZHANG F R, et al. Biocontrol Activity of Bacillus Velezensis D4 Against Apple Valsa Canker[J]. Biological Control, 2021, 163: 104760-1-104760-10. [10] CAO Y, PI H, CHANDRANGSU P, et al. Antagonism of Two Plant-Growth Promoting Bacillus Velezensis Isolates Against Ralstonia Solanacearum and Fusarium Oxysporum[J]. Scientific Reports, 2018, 8(1): 4360-1-4360-14. [11] doi: http://www.sciencedirect.com/science/article/pii/S1049964420306460 CHEN K, TIAN Z H, HE H, et al. Bacillus Species as Potential Biocontrol AgentsAgainst Citrus Diseases[J]. Biological Control, 2020, 151: 104419-1-104419-9. [12] 桑建伟, 杨扬, 陈奕鹏, 等. 内生解淀粉芽孢杆菌BEB17脂肽类和聚酮类化合物的抑菌活性分析[J]. 植物病理学报, 2018, 48(3): 402-412. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201803015.htm [13] INÈS M, DHOUHA G. LipopeptideSurfactants: Production, Recovery and Pore Forming Capacity[J]. Peptides, 2015, 71: 100-112. doi: 10.1016/j.peptides.2015.07.006 [14] FUJITA S, YOKOTA K. Disease Suppression by the Cyclic Lipopeptides Iturina and Surfactin from Bacillus SPP. Against Fusarium Wilt of Lettuce[J]. Journal of General Plant Pathology, 2019, 85(1): 44-48. doi: 10.1007/s10327-018-0816-1 [15] 罗楚平. 枯草芽胞杆菌Bs916产罗克霉素、表面活性素、杆菌霉素和泛革素的结构鉴定、合成途径及生物学功能[D]. 南京: 南京农业大学, 2014. [16] GRABOVA A Y, DRAGOVOZ I V, ZELENA L B, et al. Antifungal Activity and Gene Expression of Lipopeptide Antibiotics in Strains of Genus Bacillus[J]. Biopolymers and Cell, 2016, 32(1): 41-48. doi: 10.7124/bc.00090B [17] 付雯, 高永祥, 张晓勇. 伊枯草菌素研究进展[J]. 安徽农学通报, 2014, 20(24): 23-26. doi: 10.3969/j.issn.1007-7731.2014.24.011 [18] 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201910014.htm [19] JIN Q, JIANG Q Y, ZHAO L, et al. Complete Genome Sequence of BacillusVelezensis S3-1, a Potential Biological Pesticide with Plant Pathogen Inhibiting and Plant Promoting Capabilities[J]. Journal of Biotechnology, 2017, 259: 199-203. doi: 10.1016/j.jbiotec.2017.07.011 [20] 欧婷, 江鸿森, 任慧爽, 等. 一株香樟炭疽病拮抗菌的鉴定及其发酵条件优化[J]. 西南大学学报(自然科学版), 2019, 41(7): 43-52. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.07.007 [21] MOTTA DOS SANTOS L F, COUTTE F, RAVALLEC R, et al. An Improvement of Surfactin Production by B. Subtilis BBG131 Using Design of Experiments in Microbioreactors and Continuous Process in Bubbleless Membrane Bioreactor[J]. Bioresource Technology, 2016, 218: 944-952. doi: 10.1016/j.biortech.2016.07.053 [22] 谢颖, 刘祎炜, 刘安巧, 等. 一株Thuidium cymbifolium内生细菌的鉴定及其抑制真菌活性研究[J]. 化学与生物工程, 2020, 37(12): 17-21. doi: 10.3969/j.issn.1672-5425.2020.12.004 [23] 谭才邓, 朱美娟, 杜淑霞, 等. 抑菌试验中抑菌圈法的比较研究[J]. 食品工业, 2016, 37(11): 122-125. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201611035.htm [24] LUO C, LIU X, ZHOU H, et al. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in BacillusSubtilis 916 and Their Phenotypic Functions[J]. Applied and Environmental Microbiology, 2015, 81(1): 422-431. doi: 10.1128/AEM.02921-14 [25] 王若琳, 徐伟芳, 王飞, 等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报, 2019, 59(11): 2130-2143. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201911009.htm [26] doi: http://www.sciencedirect.com/science/article/pii/S0960852421009433 ZHU Z W, ZHANG B Y, CAI Q H, et al. A Critical Review on the Environmental Application of Lipopeptide Micelles[J]. Bioresource Technology, 2021, 339: 125602-1-125602-12. [27] 金清, 肖明. 新型抗菌肽——表面活性素、伊枯草菌素和丰原素[J]. 微生物与感染, 2018, 13(1): 56-64. doi: 10.3969/j.issn.1673-6184.2018.01.010 [28] ÖZCENGIZ G, ÖĜVLVR Ï. Biochemistry, Genetics and Regulation of Bacilysin Biosynthesis and Its Significancemore than an Antibiotic[J]. New Biotechnology, 2015, 32(6): 612-619. doi: 10.1016/j.nbt.2015.01.006 [29] RONNEBAUM T A, LAMB A L. Nonribosomal Peptides for Iron Acquisition: Pyochelin Biosynthesis as a Case Study[J]. Current Opinion in Structural Biology, 2018, 53: 1-11. doi: 10.1016/j.sbi.2018.01.015 [30] ONGENA M, JACQUES P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol[J]. Trends in Microbiology, 2008, 16(3): 115-125. doi: 10.1016/j.tim.2007.12.009 [31] VARGAS-BAUTISTA C, RAHLWES K, STRAIGHT P. Bacterial Competition Reveals Differential Regulation of thePks Genes by Bacillus Subtilis[J]. J Bacteriol, 2014, 196(4): 717-728. doi: 10.1128/JB.01022-13 [32] 徐杨, 王楠, 李伟, 等. 海洋枯草芽孢杆菌3512A抗真菌脂肽的分离纯化及结构特性鉴定[J]. 中国生物防治, 2009, 25(4): 328-333. doi: 10.3321/j.issn:1005-9261.2009.04.009 [33] 黄承敏, 王蓉蓉, 肖茜, 等. 一株具有抗菌活性芽孢杆菌HN-7的分离及抗菌活性研究[J]. 中国酿造, 2018, 37(7): 31-34. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ201807012.htm [34] 刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报(自然科学版), 2019, 39(3): 302-310. doi: 10.3969/j.issn.1000-1565.2019.03.012 [35] 迟惠荣, 张亚惠, 曾欣, 等. 多花黄精内生贝莱斯芽胞杆菌的分离鉴定及其抗菌与促生作用分析[J]. 植物保护, 2019, 45(4): 122-131. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201904022.htm [36] LI M S M, PICCOLI D A, MCDOWELL T, et al. Evaluating the Biocontrol Potential of Canadian Strain BacillusVelezensis 1B-23 via Its Surfactin Production at Various pHs and Temperatures[J]. BMC Biotechnology, 2021, 21(1): 31-1-31-12. doi: 10.1186/s12896-021-00690-x