-
开放科学(资源服务)标志码(OSID):
-
三峡水库周期性蓄水、泄洪导致库区水位升降所造成的周期性出露水面的区域被称作“三峡库区消落带”[1]. 消落带是一类特殊的湿地生态系统,是陆地生态系统和水生生态系统的过渡带,具有截污过滤、改善水质、控制沉积和减缓侵蚀的功能,并为动植物提供繁殖和栖息的场所[2].
植物是生态系统的重要组成部分,消落带的植被状况直接关系到消落带生态功能的发挥[3-4]. 受三峡库区独特的水文调节方式的影响,消落带原有植物物种难以耐受长时间、高强度的冬季水淹而大量消亡[5],造成了如库岸失稳、水土流失、生物多样性减少等一系列生态问题,也对消落带周边居民的生活与生产造成了严重的影响[6]. 因此,如何治理消落带不仅是三峡库区实现可持续发展的关键一环,也关乎到长江流域的生态安全[7]. 一般认为,选择适生植物对库区消落带进行植被重建是治理三峡库区消落带生态问题最有效且最经济的方法[8-9]. 植被重建的关键是筛选出当消落带水位回落时能耐干旱而在消落带水位回升后能耐长期水淹的两栖植物[5, 10-13]. 现已有大量研究人员通过模拟不同环境条件,筛选出了一批在消落带复杂多变的生境条件下生长表现良好的物种,如池杉(Taxodium ascendens)、立柳(Salix matsudana)、狗牙根(Cynodon dactylon)等并开展了原位示范研究[14-19]. 对示范区重建植被多年追踪观测发现,部分在模拟水淹研究中表现良好的物种当再次经历三峡库区消落带水位周期性变化后出现大面积死亡的现象,对耐淹物种的适应性及适应机理仍需要进一步探究.
水淹造成植物的生长环境从有氧变为缺氧,存留的适生植物主要靠糖酵解等无氧代谢途径获取能量,以维持植物在水淹缺氧环境下的各项生理功能[20-22]. 水淹可能对糖代谢中涉及的酶活性如淀粉酶、蔗糖合成酶、中性转化酶等产生重要影响[23],改变适生植物的碳水化合物代谢特征. 植物体内的碳水化合物可分为结构性碳水化合物(structural carbohydrates,SC)和非结构性碳水化合物(non-structural carbohydrates,NSC)[24-25]. SC包括纤维素、木质素、果胶等,主要用于植物形态的建构[26],为植物耐受逆境提供结构基础. NSC包括葡萄糖、果糖、蔗糖以及淀粉等,关系着植物的代谢、生长和发育[27],其质量分数与分配方式体现了植物在水淹胁迫下的生存策略,也直接影响着植物对逆境的耐受能力[28]. 因此,适生木本植物在水淹期间NSC的代谢特征对于其耐受水淹胁迫的能力极为关键. 作为耐淹性较强的适生木本植物,池杉已被用于三峡库区消落带的植被修复工作中. 本文以重庆市忠县汝溪河流域消落带修复示范基地池杉为例,分析种植于不同高程的池杉植株在一个水淹周期中的NSC代谢差异,以期从能量消耗的角度探索其耐淹机理,为消落带植被修复提供理论和实践指导.
Response of Non-structural Carbohydrate Metabolism of Taxodium ascendens to Water Fluctuation in the Reservoir Area
-
摘要: 为了解三峡库区消落带适生木本植物适应周期性水淹的生理机制,以重庆市忠县汝溪河消落带植被修复示范基地内池杉为研究对象,分析了不同水淹强度下池杉的生长指标、非结构性碳水化合物(NSC)质量分数及代谢酶活性的变化特征. 结果表明:1) 三峡库区冬季水淹在一定程度上抑制了池杉的生长,但退水后,水淹组池杉各项生长指标及NSC代谢指标均能恢复到对照组植株相同水平. 2) 冬季水淹期间,池杉将淀粉和果聚糖等NSC组分主要储存在根中,提高了对水淹的耐受能力; 水淹显著抑制了池杉根系的淀粉质量分数以及茎的可溶性糖质量分数. 3) 水淹显著降低了池杉中性转化酶、酸性转化酶、蔗糖合成酶以及淀粉酶的活性. 池杉在冬季水淹期间采用“忍耐”的生存策略,将NSC更多地投入到生理代谢而非生长中,表现出对水淹良好的适应性.Abstract: In order to explore the physiological mechanism of suitable woody plants adapting to periodic submergence in the fluctuating zone of the Three Gorges Reservoir (TGR), the Taxodium ascendens in the vegetation restoration demonstration base of Ruxi River in Zhong County, Chongqing was used as research objects. The growth situation, the content of non-structural carbohydrates (NSC) and the metabolic enzyme activities of plants were measured in order to explore the physiological mechanism of T. ascendens adapting to the hydrological rhythm in the TGR. The results showed that: 1) The winter submergence in the water-fluctuation zone of the TGR significantly inhibited the growth of T. ascendens, but after water withdrawal, the growth and NSC metabolism ability of plants in the submergence group could be restored to the level of the control. 2) During winter submergence, NSC components such as starch and fructan were mainly stored in the roots, which improved the tolerance to submergence. The starch content in the roots and soluble sugar content in stems were significantly inhibited by winter submergence. 3) The activities of neutral invertase, acid invertase, sucrose synthase and amylase were significantly reduced during winter submergence period. T. ascendens devoted more NSC to physiological metabolism than growth during winter submergence and showed good adaptability to winter fluctuation in TGR.
-
表 1 样带基本信息
样带分组 海拔/m 最大水淹深度/m 水淹时长/d 对照组(CK) 175 0 0 中度水淹组(MS) 170 5 115 重度水淹组(DS) 165 10 172 表 2 各处理组池杉的生长指标(n=4)
采样时间 处理 株高/m 基径/mm 干质量/g 2017.2.17 CK 1.68±0.03a 23.12±2.16a 167.29±7.32a MS 1.61±0.03a 22.42±1.40a 132.75±6.72b 2017.3.31 CK 1.71±0.08a 24.43±0.49a 172.52±4.31a DS 1.58±0.10a 21.38±1.44a 128.22±5.00b 2017.9.11 CK 1.75±0.02a 24.57±0.53a 189.99±5.36a MS 1.70±0.02a 24.08±0.29a 156.50±4.92b DS 1.71±0.03a 23.02±0.39b 152.88±4.51b 注:表中数据为x±s,小写字母不同表示p<0.05,差异有统计学意义. 表 3 恢复生长末期对比退水初期的池杉NSC质量分数
/(mg·g-1) 处理 部位 采样时间 淀粉 可溶性糖 蔗糖 果聚糖 MS 根 2.17 67.02±12.11a 58.44±6.45a 30.25±4.12a 50.01±6.48a 9.11 134.87±5.65b 80.70±1.93b 49.16±8.64b 63.51±9.72a 茎 2.17 28.33±3.34a 31.07±3.43a 28.47±4.28a 7.72±0.99a 9.11 95.31±4.92b 81.36±5.45b 36.23±6.36a 15.23±0.92b DS 根 3.31 73.67±10.28a 43.04±6.32a 27.56±4.56a 34.17±1.66a 9.11 129.36±4.97b 78.23±7.17b 45.75±4.82b 60.87±7.64b 茎 3.31 28.04±2.76a 30.60±1.50a 25.50±2.37a 6.72±0.96a 9.11 101.00±10.79b 79.50±3.25b 36.11±5.98a 14.10±1.28b 注:表中数据为x±s,小写字母不同表示p<0.05,差异有统计学意义. -
[1] 由永飞, 杨春华, 雷波, 等. 水位调节对三峡水库消落带植被群落特征的影响[J]. 应用与环境生物学报, 2017, 23(6): 1103-1109. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201706022.htm [2] 王建超, 朱波, 汪涛. 三峡库区典型消落带淹水后草本植被的自然恢复特征[J]. 长江流域资源与环境, 2011, 20(5): 603-610. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201105016.htm [3] YANG F, WANG Y, CHAN Z L. Perspectives on Screening Winter-Flood-Tolerant Woody Species in the Riparian Protection Forests of the Three Gorges Reservoir[J]. PLoS One, 2014, 9(9): e108725. doi: 10.1371/journal.pone.0108725 [4] XIANG R, WANG L J, LI H, et al. Temporal and Spatial Variation in Water Quality in the Three Gorges Reservoir from 1998 to 2018[J]. Science of the Total Environment, 2021, 768: 144866. doi: 10.1016/j.scitotenv.2020.144866 [5] ZHU Z H, CHEN Z L, LI L, et al. Response of Dominant Plant Species to Periodic Flooding in the Riparian Zone of the Three Gorges Reservoir (TGR), China[J]. Science of the Total Environment, 2020, 747: 141101. doi: 10.1016/j.scitotenv.2020.141101 [6] XIONG Y, ZHOU J Z, CHEN L, et al. Land Use Pattern and Vegetation Cover Dynamics in the Three Gorges Reservoir (TGR) Intervening Basin[J]. Water, 2020, 12(7): 2036. doi: 10.3390/w12072036 [7] 汤显强, 吴敏, 金峰. 三峡库区消落带植被恢复重建模式探讨[J]. 长江科学院院报, 2012, 29(3): 13-17. doi: 10.3969/j.issn.1001-5485.2012.03.003 [8] XIAO W F, GE X G, ZENG L X, et al. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus Massoniana Forests in the Three Gorges Reservoir Area, China[J]. PLoS One, 2014, 9(7): e101890. doi: 10.1371/journal.pone.0101890 [9] 周明涛, 杨平, 许文年, 等. 三峡库区消落带植物治理措施[J]. 中国水土保持科学, 2012, 10(4): 90-94. doi: 10.3969/j.issn.1672-3007.2012.04.016 [10] ZHANG A Y, XIE Z Q. C4 Herbs Dominate the Reservoir Flood Area of the Three Gorges Reservoir[J]. Science of the Total Environment, 2021, 755: 142479. doi: 10.1016/j.scitotenv.2020.142479 [11] YANG S, CHENG R M, XIAO W F, et al. Heterogeneity in Decomposition Rates and Nutrient Release in Fine-Root Architecture of Pinus Massoniana in the Three Gorges Reservoir Area[J]. Forests, 2019, 11(1): 14. doi: 10.3390/f11010014 [12] 马利民, 唐燕萍, 张明, 等. 三峡库区消落区几种两栖植物的适生性评价[J]. 生态学报, 2009, 29(4): 1885-1892. doi: 10.3321/j.issn:1000-0933.2009.04.031 [13] 樊大勇, 熊高明, 张爱英, 等. 三峡库区水位调度对消落带生态修复中物种筛选实践的影响[J]. 植物生态学报, 2015, 39(4): 416-432. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201504013.htm [14] WANG C Y, LI C X, WEI H, et al. Effects of Long-Term Periodic Submergence on Photosynthesis and Growth of Taxodium Distichum and Taxodium Ascendens Saplings in the Hydro-Fluctuation Zone of the Three Gorges Reservoir of China[J]. PLoS One, 2016, 11(9): e0162867. doi: 10.1371/journal.pone.0162867 [15] LI B, DU C L, YUAN X Z, et al. Suitability of Taxodium Distichum for Afforesting the Littoral Zone of the Three Gorges Reservoir[J]. PLoS One, 2016, 11(1): e0146664. doi: 10.1371/journal.pone.0146664 [16] 钟荣华, 贺秀斌, 鲍玉海, 等. 狗牙根和牛鞭草的消浪减蚀作用[J]. 农业工程学报, 2015, 31(2): 133-140. doi: 10.3969/j.issn.1002-6819.2015.02.019 [17] 李兆佳, 熊高明, 邓龙强, 等. 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力[J]. 生态学报, 2013, 33(11): 3362-3369. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201311014.htm [18] 甘丽萍, 杨玲, 李豪, 等. 三峡库区消落带狗牙根与桑树淹没后的恢复机制[J]. 中国水土保持科学, 2020, 18(5): 60-68. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STBC202005009.htm [19] 谭淑端, 朱明勇, 党海山, 等. 三峡库区狗牙根对深淹胁迫的生理响应[J]. 生态学报, 2009, 29(7): 3685-3691. doi: 10.3321/j.issn:1000-0933.2009.07.029 [20] 赵婷, 李琴, 潘学军, 等. 陆生植物对淹水胁迫的适应机制[J]. 植物生理学报, 2021, 57(11): 2091-2103. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL202111004.htm [21] 李川, 周倩, 王大铭, 等. 模拟三峡库区淹水对植物生长及生理生化方面的影响[J]. 西南大学学报(自然科学版), 2011, 33(10): 46-50. doi: http://xbgjxt.swu.edu.cn/article/id/jsunsxnnydxxb201110011 [22] 陈红纯, 曾成城, 李瑞, 等. 水淹条件下秋华柳对Cd污染土壤化学性质的影响[J]. 西南大学学报(自然科学版), 2019, 41(2): 17-26. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.02.003 [23] BORIBOONKASET T, THEERAWITAYA C, YAMADA N, et al. Regulation of some Carbohydrate Metabolism-Related Genes, Starch and Soluble Sugar Contents, Photosynthetic Activities and Yield Attributes of Two Contrasting Rice Genotypes Subjected to Salt Stress[J]. Protoplasma, 2013, 250(5): 1157-1167. doi: 10.1007/s00709-013-0496-9 [24] LIU W D, SU J R, LI S F, et al. Non-Structural Carbohydrates Regulated by Season and Species in the Subtropical Monsoon Broad-Leaved Evergreen Forest of Yunnan Province, China[J]. Scientific Reports, 2018(8): 1010-1083. [25] DA SILVA FERREIRA C, PIEDADE M T F, TINÉ M A S, et al. The Role of Carbohydrates in Seed Germination and Seedling Establishment of Himatanthus Sucuuba, an Amazonian Tree with Populations Adapted to Flooded and Non-Flooded Conditions[J]. Annals of Botany, 2009, 104(6): 1111-1119. doi: 10.1093/aob/mcp212 [26] KAMM B, KAMM M, SCHMIDT M, et al. Chemical and Biochemical Generation of Carbohydrates from Lignocellulose-Feedstock (Lupinus Nootkatensis)—Quantification of Glucose[J]. Chemosphere, 2006, 62(1): 97-105. doi: 10.1016/j.chemosphere.2005.03.073 [27] VENEKLAAS E J, DEN OUDEN F. Dynamics of Non-Structural Carbohydrates in Two Ficus Species after Transfer to Deep Shade[J]. Environmental and Experimental Botany, 2005, 54(2): 148-154. doi: 10.1016/j.envexpbot.2004.06.010 [28] NIAMKÉ F B, AMUSANT N, CHARPENTIER J P, et al. Relationships between Biochemical Attributes (Non-Structural Carbohydrates and Phenolics) and Natural Durability Against Fungi in Dry Teak Wood (Tectona Grandis L. F. )[J]. Annals of Forest Science, 2011, 68(1): 201-211. doi: 10.1007/s13595-011-0021-2 [29] ZHANG Q, YU Z, WANG X G. Isolating and Evaluating Lactic Acid Bacteria Strains with or without Sucrose for Effectiveness of Silage Fermentation[J]. Grassland Science, 2015, 61(3): 167-176. doi: 10.1111/grs.12097 [30] ECHEVERRÍA E. Activities of Sucrose Metabolising Enzymes during Sucrose Accumulation in Developing Acid Limes[J]. Plant Science, 1992, 85(2): 125-129. doi: 10.1016/0168-9452(92)90106-V [31] PESHEV D, VAN DEN ENDE W. Fructans: Prebiotics and Immunomodulators[J]. Journal of Functional Foods, 2014, 8: 348-357. doi: 10.1016/j.jff.2014.04.005 [32] MITSUNAGA S, KAWAKAMI O, NUMATA T, et al. Polymorphism in Rice Amylases at an Early Stage of Seed Germination[J]. Bioscience, Biotechnology, and Biochemistry, 2001, 65(3): 662-665. doi: 10.1271/bbb.65.662 [33] SUBBARAO K V, DATTA R, SHARMA R. Amylases Synthesis in Scutellum and Aleurone Layer of Maize Seeds[J]. Phytochemistry, 1998, 49(3): 657-666. doi: 10.1016/S0031-9422(97)00964-3 [34] LI C X, ZHONG Z C, LIU Y. Effect of Soil Water Changes on Photosynthetic Characteristics of Taxodium Distichum Seedlings in the Hydro-Fluctuation Belt of the Three Gorges Reservoir Area[J]. Frontiers of Forestry in China, 2006, 1(2): 163-169. doi: 10.1007/s11461-006-0013-9 [35] 马文超, 刘媛, 周翠, 等. 水位变化对三峡库区消落带落羽杉营养特征的影响[J]. 生态学报, 2017, 37(4): 1128-1136. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201704008.htm [36] LUO F L, NAGEL K A, SCHARR H, et al. Recovery Dynamics of Growth, Photosynthesis and Carbohydrate Accumulation after De-Submergence: a Comparison between Two Wetland Plants Showing Escape and Quiescence Strategies[J]. Annals of Botany, 2010, 107(1): 49-63. [37] MANZUR M E, GRIMOLDI AA, INSAUSTI P, et al. Escape from Water or Remain Quiescent? Lotus Tenuis Changes Its Strategy Depending on Depth of Submergence[J]. Annals of Botany, 2009, 104(6): 1163-1169. doi: 10.1093/aob/mcp203 [38] AKMAN M, BHIKHARIE A V, MCLEAN E H, et al. Wait or Escape? Contrasting Submergence Tolerance Strategies of Rorippa Amphibia, Rorippa Sylvestris and Their Hybrid[J]. Annals of Botany, 2012, 109(7): 1263-1276. doi: 10.1093/aob/mcs059 [39] ZEEMAN S C, SMITH S M, SMITHA M. The Diurnal Metabolism of Leaf Starch[J]. The Biochemical Journal, 2007, 401(1): 13-28. doi: 10.1042/BJ20061393 [40] 揭胜麟, 樊大勇, 谢宗强, 等. 三峡水库消落带植物叶片光合与营养性状特征[J]. 生态学报, 2012, 32(6): 1723-1733. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201206007.htm [41] GUTIÉRREZ-MICELI F A, RODRÍGUEZ-MENDIOLA M A, OCHOA-ALEJO N, et al. Relationship between Sucrose Accumulation and Activities of Sucrose-Phosphatase, Sucrose Synthase, Neutral Invertase and Soluble Acid Invertase in Micropropagated Sugarcane Plants[J]. Acta Physiologiae Plantarum, 2002, 24(4): 441-446. doi: 10.1007/s11738-002-0041-5 [42] 杜珲, 张小萍, 曾波. 水体溶氧影响陆生植物喜旱莲子草(Alternanthera philoxeroides)和牛鞭草(Hemarthria altissima)对完全水淹的耐受力[J]. 生态学报, 2016, 36(23): 7562-7569. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201623006.htm [43] KOGAWARA S, YAMANOSHITA T, NORISADA M, et al. Steady Sucrose Degradation is a Prerequisite for Tolerance to Root Hypoxia[J]. Tree Physiology, 2014, 34(3): 229-240. doi: 10.1093/treephys/tpu013 [44] ALBRECHT G, MUSTROPH A, FOX T C. Sugar andFructan Accumulation during Metabolic Adjustment between Respiration and Fermentation under Low Oxygen Conditions in Wheat Roots[J]. Physiologia Plantarum, 2004, 120(1): 93-105. doi: 10.1111/j.0031-9317.2004.0205.x [45] ZENG Y, WU Y, AVIGNE W T, et al. Rapid Repression of MaizeInvertases by Low Oxygen. Invertase/Sucrose Synthase Balance, Sugar Signaling Potential, and Seedling Survival[J]. Plant Physiology, 1999, 121(2): 599-608. doi: 10.1104/pp.121.2.599 [46] SCHÄFER W E, ROHWER J M, BOTHA F C. Partial Purification and Characterisation of Sucrose Synthase in Sugarcane[J]. Journal of Plant Physiology, 2005, 162(1): 11-20. doi: 10.1016/j.jplph.2004.04.010 [47] HANG H. Recent Advances on the Difructose Anhydride IV Preparation from Levan Conversion[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7477-7486. doi: 10.1007/s00253-017-8500-5 [48] LAUE H, SCHENK A, LI H Q, et al. Contribution of Alginate and Levan Production to Biofilm Formation by Pseudomonas Syringae[J]. Microbiology (Reading, England), 2006, 152(10): 2909-2918. doi: 10.1099/mic.0.28875-0