-
开放科学(资源服务)标志码(OSID):
-
蜡梅Chimonanthus praecox为蜡梅科蜡梅属落叶灌木,是我国特有的传统名贵花木,也是少有的冬季开花观赏植物,具有悠久的栽培历史[1]. 蜡梅因其色如蜜蜡,芳香馥郁而得名,并深受人们喜爱,在我国西南地区被广泛应用于园林绿化[2],也用于香精提取、花茶炮制及窨制. 近年来,高通量测序技术及基因挖掘技术飞速发展,促进了解析基因表达差异、新基因发掘、基因功能研究的进步. 同时,蜡梅cDNA文库[3]和转录组数据库[4-5]的构建,为蜡梅分子生物学研究奠定了基础. 类胡萝卜素是一类含有40个碳且呈黄色、橙红色及红色的类异戊烯聚合物,属于四萜类脂溶性多烯色素,分为胡萝卜素和叶黄素两类[6-8]. 目前,已鉴定出的类胡萝卜素有1 000多种[9],在动物、植物、真菌和细菌中广泛存在. 高等植物的类胡萝卜素主要存在于叶、花、果实、根等有色体的质体中. 存在于叶中的类胡萝卜素在植物光合作用过程中发挥着重要作用[10]. 在果实、根和花等非光合作用组织中,具有不同成分和含量的类胡萝卜素作为特殊代谢产物聚集,不仅使植物的花和果实呈现不同的颜色,还可以分解成有气味和味道的化合物,吸引昆虫传粉和动物传播种子[7, 11-12]. 另外,类胡萝卜素也参与植物激素如脱落酸(abscisic acid,ABA)、独角金内酯(strigolactones)等的生物合成[13-14].
2-C-甲基-D-赤藓糖醇-4-磷酸(2-C-methyl-D-erythritol-4-phosphate,MEP)途径和甲羟戊酸(mevalonate,MVA)途径是植物萜类化合物合成的两个途径[15]. 类胡萝卜素的前体物质异戊烯基焦磷酸(isopentenyl diphosphate,IPP)通过MEP途径合成(图 1),由甘油醛-3-磷酸(glyceraldehyde 3-phosphate,GA3P)和丙酮酸盐(pyruvate)在1-脱氧-D-木酮糖-5-磷酸合酶(1-deoxy-D-xylulose 5-phosphate synthase,DXS)作用下发生缩合反应,生成1-脱氧-D-木酮糖-5-磷酸(1-deoxy-D-xylulose 5-phosphate,DXP),再由1-脱氧-D-木酮糖-5-磷酸还原异构酶(1-deoxy-D-xylulose 5-phosphate reductoisomerase,DXR)催化,经过一系列反应生成IPP[16]. IPP在IPP异构酶(isopentenyl diphosphate isomerase,IPI)的催化下转化为二甲基丙烯基二磷酸(dimethylallyl diphosphate,DMAPP),DMAPP在牻牛儿基牻牛儿基焦磷酸合成酶(geranylgeranyl diphosphate synthase,GGPS/GGPPS)作用下与3个IPP发生缩合反应,生成20碳的牻牛儿基牻牛儿基焦磷酸(geranylgeranyl diphosphate,GGPP). GGPP由八氢番茄红素合成酶(phytoene synthase,PSY)催化,缩合形成15-顺式-八氢番茄红素(15-cis-phytoene). 15-顺式-八氢番茄红素在八氢番茄红素脱氢酶(phytoene desaturase,PDS)和类胡萝卜素异构酶(ζ-carotene isomerase,ZISO)作用下,生成ζ-胡萝卜素. ζ-胡萝卜素在ζ-胡萝卜素脱氢酶(ζ-carotene desaturase,ZDS)和类胡萝卜素异构酶(carotenoid isomerase,CrtISO)作用下形成全反式番茄红素(all trans lycopene). 全反式番茄红素的环化反应由番茄红素环化酶(lycopene β-cyclase,LCYB与lycopene ε-cyclase,LCYE)催化,生成两种不同的类胡萝卜素,即β-胡萝卜素(含2个β环)和α-胡萝卜素(含1个β环和1个ε环)[17]. α-胡萝卜素与细胞色素P450胡萝卜素羟化酶(cytochrome P450 carotene hydroxylase,CYP97)发生反应生成叶黄素(lutein)[18]. β-胡萝卜素与β-环羟化酶(β-carotene hydroxylase,CHY-β/BCH)及玉米黄质环氧酶(zeaxanthin epoxidase,ZEP)反应形成玉米黄质(zeaxanthin)、紫黄质/堇菜黄质(violaxanthin)等物质. 紫黄质可通过新黄质合成酶(neoxanthin synthase,NXS)催化进一步形成新黄质(neoxanthin)[19]. β-胡萝卜素可被类胡萝卜素裂解双加氧酶(carotenoid cleavage dioxygenases,CCD)经过一系列反应裂解,合成独角金内酯[20]、挥发性有机化合物(volatile organic compounds,VOCs)[14, 21]等; 紫黄质和新黄质可被9-顺-环氧类胡萝卜素双氧酶(9-cis-epoxycarotenoid dioxygenases,NCED)催化裂解生成脱落酸合成的前体物质[22].
在植物生长发育过程中,控制类胡萝卜素合成与代谢的机制复杂而多样,不能对单一基因开展研究,需结合多个基因的协同作用进行分析. 本文通过研究类胡萝卜素生物合成与代谢相关基因转录水平的变化及类胡萝卜素含量变化之间存在的相关性,为探索蜡梅类胡萝卜素代谢机制及人工调控蜡梅类胡萝卜素含量提供一定的理论基础,同时也为蜡梅花中黄色可食用色素的提取及茶用蜡梅花的保健功能提供参考.
Analysis of Expression Differences of Carotenoid Synthesis and Metabolism Related Genes in Chimonanthus praecox
-
摘要: 在植物花发育过程中,类胡萝卜素的含量会随之发生变化. 类胡萝卜素的合成与代谢受多个基因调控. 通过分析蜡梅不同花发育时期类胡萝卜素合成与代谢基因的表达差异,可以为蜡梅类胡萝卜素合成与代谢调控机制的研究以及人工调控蜡梅类胡萝卜素含量提供理论基础. 该研究对蜡梅转录组数据库中不同花发育时期及不同需冷量积累下类胡萝卜素合成与代谢相关基因进行表达差异分析; 以蜡梅露瓣、盛开、衰败3个发育时期的花为材料,利用有机溶剂法与高效液相色谱法测定其类胡萝卜素与β-胡萝卜素含量; 利用实时荧光定量PCR技术进一步验证蜡梅类胡萝卜素合成及代谢相关基因在露瓣期、盛开期、衰败期的表达差异. 结果表明:从露瓣期到盛开期,类胡萝卜素合成基因CpPSY2表达量升高,类胡萝卜素含量升高; 到衰败期,类胡萝卜素代谢基因CpNCEDs表达量升高,CpPSY2表达量降低,类胡萝卜素含量降低. 从露瓣期到盛开期,再到衰败期,CpLCYB表达量一直较低,CpBCH1a和CpBCH1b在盛开期表达量最高,CpBCH2在衰败期表达量最高,使得β-胡萝卜素含量逐渐降低,影响了类胡萝卜素不同组分的含量; CpCCD1a在盛开期表达量最高,此时蜡梅香气最为浓郁,可能与CpCCD1a裂解β-胡萝卜素,产生芳香类物质有关. 在蜡梅花发育过程中,类胡萝卜素合成及代谢基因表达量差异较大,影响了花中类胡萝卜素总量及各组分的含量.Abstract: The carotenoid content fluctuates during flower development in plants. The synthesis and metabolism of carotenoids are regulated by multiple genes. Analyzing the expression differences of carotenoid synthesis and metabolism genes at different flower development stages can provide a theoretic basis for the study of the regulation mechanism of the carotenoid synthesis and metabolismin C. praecox, as well as the artificial regulation of the carotenoid content. In this study, the differences in gene expression related to carotenoid synthesis and metabolism were analyzed at different flower development stages and chilling requirements(CR) accumulation based on the transcriptome database of C. praecox. The flowers in displayed petal stage (DP), open flower stage (OF), and senescing flower stage(SF) of C. praecox were used as materials to determine carotenoid and β-carotene contents by organic solvent method and high performance liquid chromatography(HPLC). Quantitative real-time PCR technique was used to further verify the differences of genes expression related to carotenoid synthesis and metabolism in three stages of flower development. The results showed thatfrom DP to OF, the expression of carotenoid synthesis gene CpPSY2 and the carotenoid content were increased. In SF, the expression of carotenoid metabolism gene CpNCEDs was increased, the expression of CpPSY2 was decreased, and the carotenoid content was decreased. The expression of CpLCYB was low throughout the three stages. The highest expression of CpBCH1a and CpBCH1b were observed in OF, while CpBCH2 in SF, which resulted in the gradual decrease of β-carotene content, and affected the contents of different components of carotenoids. The expression of CpCCD1a reached to the highest in OF and the floral aroma was the strongest at this time. This may be related to the cleavage of β-carotene by CpCCD1a to produce aromatic substances. The expression of carotenoid synthesis and metabolism related genes differed greatly, which affected the total carotenoid content and content of each component during the flower development in C. praecox.
-
Key words:
- Chimonanthus praecox /
- carotenoid /
- gene /
- expression differences /
- synthesis and metabolism .
-
表 1 实时荧光定量PCR引物表
基因 正向引物 反向引物 CpActin-b AGGCTAAGATTCAAGACAAGG TTGGTCGCAGCTGATTGCTGTG CpTublin TAGTGACAAGACAGTAGGTGGAGGT GTAGGTTCCAGTCCTCACTTCATC CpGGPS1a CTTTGTAAGATTTTGCTCCCCCG CGATCATGTAGTAAGATAACCTGGC CpPSY2 GGCGTCCACCTGTCATTTCTATCTG CCCATCAACGCCCAGAAAAT CpPDS CAAGTGAGTTGTGCTTTCCTTATTC TTGGGAAGGTTTTGATGATCAGATC CpZDS GTTGTTTCCCCCAGAACCTGAGCAC CAGCTCCAATGATAGCCACTTTAAG CpCrtISO GGCGAAAGATGATTGACAACTAAG CAAAAGATTAGTGCAGCAATGTGC CpLCYE GAACAGATGGCGAATCTGCTTT TTAAGAACCTCAGCCTCTCTGCATT CpLCYB1a GTTTGGGGCAGTCTGTGGCA TCAACAGTGTCTCCATTCCAAAGC CpZEP CACTGCGAGTTCTCATTGTTGC GCTTTCATGTTTCCACCTTTCC CpCCD1 TTGATTTCCCACTCTCTGGTTCTGC GTCTGTATCTGCTGTTGATTTTCC CpNCED CCAAAGTTACCTACTCCTTACACGC GGACCCGAGTCACTGGTTCCTTCAT -
[1] SHANG J, TIAN J, CHENG H, et al. The Chromosome-Level Wintersweet (Chimonanthus praecox) Genome Provides Insights into Floral Scent Biosynthesis and Flowering in Winter[J]. Genome Biology, 2020, 21(1): 200-228. doi: 10.1186/s13059-020-02088-y [2] 王雷, 李玲莉, 王海洋, 等. 重庆市46种木本园林植物不同生长型对开花物候的效应[J]. 西南大学学报(自然科学版), 2020, 42(11): 86-94. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.11.010 [3] SUI S, LUO J, MA J, et al. Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes[J]. Comparative and Functional Genomics, 2012(5): 134596-134609. [4] LIU D F, SUI S F, MA J, et al. Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)[J]. PLoS One, 2014, 9(1): e86976. doi: 10.1371/journal.pone.0086976 [5] LI Z N, LIU N, ZHANG W, et al. Integrated Transcriptome and Proteome Analysis Provides Insight into Chilling-Induced Dormancy Breaking in Chimonanthus praecox[J]. Horticulture Research, 2020, 7(1): 198-207. doi: 10.1038/s41438-020-00421-x [6] WURTZEL E T. Changing Form and Function through Carotenoids and Synthetic Biology[J]. Plant Physiology, 2019, 179(3): 830-843. doi: 10.1104/pp.18.01122 [7] SUN T, LI L. Toward the 'Golden' Era: The Status in Uncovering the Regulatory Control of Carotenoid Accumulation in Plants[J]. Plant Science, 2020, 290(1): 110331-110342. [8] ZHENG X, GIULIANO G, AL-BABILI S. Carotenoid Biofortification in Crop Plants: Citius, Altius, Fortius[J]. Biochimica Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(11): 158664-158681. [9] YABUZAKI J. Carotenoids Database: Structures, Chemical Fingerprints and Distribution among Organisms[J]. Database, 2017(4): 1-11. [10] SUN T, YUAN H, CAO H, et al. Carotenoid Metabolism in Plants: The Role of Plastids[J]. Molecular Plant, 2018, 11(1): 58-74. doi: 10.1016/j.molp.2017.09.010 [11] YUAN H, ZHANG J, NAGESWARAN D, et al. Carotenoid Metabolism and Regulation in Horticultural Crops[J]. Horticulture Research, 2015, 2(9): 15036-15047. [12] GAO L, GONDA I, SUN H, et al. The Tomato Pan-Genome Uncovers New Genes and a Rare Allele Regulating Fruit Flavor[J]. Nature Genetics, 2019, 51(6): 1044-1051. doi: 10.1038/s41588-019-0410-2 [13] UMEHARA M, HANADA A, YOSHIDA S, et al. Inhibition of Shoot Branching by New Terpenoid Plant Hormones[J]. Nature, 2008, 455(7210): 195-200. doi: 10.1038/nature07272 [14] LIU L, SHAO Z, ZHANG M, et al. Regulation of Carotenoid Metabolism in Tomato[J]. Molecular Plant, 2015, 8(1): 28-39. doi: 10.1016/j.molp.2014.11.006 [15] EISENREICH W, ROHDICH F, BACHER A. Deoxyxylulose Phosphate Pathway to Terpenoids[J]. Trends in Plant Science, 2001, 6(2): 78-84. doi: 10.1016/S1360-1385(00)01812-4 [16] RODRIGUEZ-CONCEPCION M, BORONAT A. Breaking New Ground in the Regulation of the Early Steps of Plant Isoprenoid Biosynthesis[J]. Current Opinion in Plant Biology, 2015, 25(6): 17-22. [17] MCQUINN R P, WONG B, GIOVANNONI J J. AtPDS Overexpression in Tomato: Exposing Unique Patterns of Carotenoid Self-Regulation and an Alternative Strategy for the Enhancement of Fruit Carotenoid Content[J]. Plant Biotechnology Journal, 2018, 16(2): 482-494. doi: 10.1111/pbi.12789 [18] KIM J E, CHENG K M, CRAFT N E, et al. Over-Expression of Arabidopsis thaliana Carotenoid Hydroxylases Individually and in Combination with a Beta-Carotene Ketolase Provides Insight into in Vivo Functions[J]. Phytochemistry, 2010, 71(2/3): 168-178. [19] SUN T, TADMOR Y, LI L: Pathways for Carotenoid Biosynthesis, Degradation, and Storage[J]. Methods in Molecular Biology, 2020, 2083(11): 3-23. [20] JIA K P, BAZ L, AL-BABILI S. From Carotenoids to Strigolactones[J]. Journal of Experimental Botany, 2018, 69(9): 2189-2204. doi: 10.1093/jxb/erx476 [21] VOGEL J, TIEMAN D, SIMS C, et al. Carotenoid Content Impacts Flavor Acceptability in Tomato (Solanum lycopersicum)[J]. Journal of the Science of Food and Agriculture, 2010, 90(13): 2233-2240. doi: 10.1002/jsfa.4076 [22] KANG L, PARK S C, JI C Y, et al. Metabolic Engineering of Carotenoids in Transgenic Sweetpotato[J]. Breed Science, 2017, 67(1): 27-34. doi: 10.1270/jsbbs.16118 [23] 郝再彬, 苍晶, 徐仲, 等. 植物生理实验[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004: 46-49. [24] CHEN C J, CHEN H, ZHANG Y, et al. Tbtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009 [25] LI S, STRID A. Anthocyanin Accumulation and Changes in Chs and Pr-5 Gene Expression in Arabidopsis thaliana after Removal of the Inflorescence Stem (Decapitation)[J]. Plant physiology and Biochemistry, 2005, 43(6): 521-525. doi: 10.1016/j.plaphy.2005.05.004 [26] DEMURTAS O C, DE BRITO FRANCISCO R, DIRETTO G, et al. ABCC Transporters Mediate the Vacuolar Accumulation of Crocins in Saffron stigmas[J]. Plant Cell, 2019, 31(11): 2789-2804. [27] ZHENG X J, ZHU K J, SUN Q, et al. Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel[J]. Molecular Plant, 2019, 12(9): 1294-1307. doi: 10.1016/j.molp.2019.04.014 [28] 岳宁波, 李云洲, 李玉龙, 等. 番茄SlMAPK6基因克隆及其表达特性分析[J]. 南方农业学报, 2020, 51(7): 1625-1633. doi: 10.3969/j.issn.2095-1191.2020.07.015 [29] 阙怡, 张基林, 王梦榕, 等. 番茄的酵母双杂交cDNA文库构建与评价[J]. 西南师范大学学报(自然科学版), 2021, 46(9): 75-80. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202109010.htm [30] CAO H B, LUO H M, YUAN H, et al. A Neighboring Aromatic-Aromatic Amino Acid Combination Governs Activity Divergence between Tomato Phytoene Synthases[J]. Plant Physiology, 2019, 180(4): 1988-2003. doi: 10.1104/pp.19.00384 [31] JANG S J, JEONG H B, JUNG A, et al. Phytoene Synthase 2 Can Compensate for the Absence of PSY1 in the Control of Color in Capsicum Fruit[J]. Journal of Experimental Botany, 2020, 71(12): 3417-3427. doi: 10.1093/jxb/eraa155 [32] ZHU C F, NAQVI S, BREITENBACH J, et al. Combinatorial Genetic Transformation Generates a Library of Metabolic Phenotypes for the Carotenoid Pathway in Maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18232-18237. doi: 10.1073/pnas.0809737105 [33] ZENG J, WANG C, CHEN X, et al. The Lycopene B-Cyclase Plays a Significant Role in Provitamin a Biosynthesis in Wheat Endosperm[J]. BMC Plant Biology, 2015, 15(5): 112-126. [34] HERMANNS A S, ZHOU X, XU Q, et al. Carotenoid Pigment Accumulation in Horticultural Plants[J]. Horticultural Plant Journal, 2020, 6(6): 343-360. doi: 10.1016/j.hpj.2020.10.002 [35] SUN L, YUAN B, ZHANG M, et al. Fruit-Specific Rnai-Mediated Suppression of SlNCED1 Increases Both Lycopene and B-Carotene Contents in Tomato Fruit[J]. Journal of Experimental Botany, 2012, 63(8): 3097-3108. doi: 10.1093/jxb/ers026 [36] WANG Y, ZHI Y L, JIN Q M, et al. Discovery of 4-((7h-Pyrrolo[2, 3-D] Pyrimidin-4-Yl)Amino)-N-(4-((4-Methylpiperazin-1-Yl)Methyl)P Henyl)-1h-Pyrazole-3-Carboxamide (Fn-1501), an Flt3- and Cdk-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia[J]. Journal of Medicinal Chemistry, 2018, 61(4): 1499-1518. doi: 10.1021/acs.jmedchem.7b01261 [37] LASHBROOKE J G, YOUNG P R, DOCKRALL S J, et al. Functional Characterisation of Three Members of the Vitis Vinifera L. Carotenoid Cleavage Dioxygenase Gene Family[J]. BMC Plant Biology, 2013, 13(10): 156-173. [38] TUAN P A, PARK S U. Molecular Cloning and Characterization of Cdnas Encoding Carotenoid Cleavage Dioxygenase in Bitter Melon (Momordica charantia)[J]. Journal of Plant Physiology, 2013, 170(1): 115-120. doi: 10.1016/j.jplph.2012.09.001 [39] OHMIYA A, KISHIMOTO S, AIDA R, et al. Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals[J]. Plant Physiology, 2006, 142(3): 1193-1201. doi: 10.1104/pp.106.087130 [40] JING G X, LI T T, QU H, et al. Carotenoids and Volatile Profiles of Yellow-and Red-Fleshed Papaya Fruit in Relation to the Expression of Carotenoid Cleavage Dioxygenase Genes[J]. Postharvest Biology and Technology, 2015, 109(11): 114-119. [41] NACKE C, HüTTMANN S, ETSCHMANN M M, et al. Enzymatic Production and In Situ Separation of Natural B-Ionone from B-Carotene[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(12): 1771-1778. [42] URESHINO K, NAKAYAMA M, MIYAJIMA I. Contribution Made by the Carotenoid Cleavage Dioxygenase 4 Gene to Yellow Colour Fade in Azalea Petals[J]. Euphytica, 2016, 207(2): 401-417. doi: 10.1007/s10681-015-1557-2 [43] BAI S L, TUAN P A, TATSUKI M, et al. Knockdown of Carotenoid Cleavage Dioxygenase 4 (CCD4) Via Virus-Induced Gene Silencing Confers Yellow Coloration in Peach Fruit: Evaluation of Gene Function Related to Fruit Traits[J]. Plant Molecular Biology Reporter, 2016, 34(1): 257-264. doi: 10.1007/s11105-015-0920-8 [44] WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Alteration of Flower Colour in Ipomoea Nil through CRISPR/Cas9-Mediated Mutagenesis of Carotenoid Cleavage Dioxygenase 4[J]. Transgenic Research, 2018, 27(1): 25-38. doi: 10.1007/s11248-017-0051-0 [45] SIMKIN A J, UNDERWOOD B A, AULDRIDGE M, et al. Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of Beta-Ionone, a Fragrance Volatile of Petunia Flowers[J]. Plant Physiol, 2004, 136(3): 3504-3514. doi: 10.1104/pp.104.049718 [46] HUANG F C, MOLNÁR P, SCHWAB W. Cloning and Functional Characterization of Carotenoid Cleavage Dioxygenase 4 Genes[J]. Journal of Experimental Botany, 2009, 60(11): 3011-3022. doi: 10.1093/jxb/erp137 [47] SONG M-H, LIM S-H, KIM J K, et al. In Planta Cleavage of Carotenoids by Arabidopsis Carotenoid Cleavage Dioxygenase 4 in Transgenic Rice Plants[J]. Plant Biotechnology Reports, 2016, 10(5): 291-300. doi: 10.1007/s11816-016-0405-8 [48] VALLABHANENI R, BRADBURY L M, WURTZEL E T. The Carotenoid Dioxygenase Gene Family in Maize, Sorghum, and Rice[J]. Archives of Biochemistry and Biophysics, 2010, 504(1): 104-111. doi: 10.1016/j.abb.2010.07.019 [49] VOGEL J T, TAN B C, MCCARTY D R, et al. The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions[J]. Journal of Biological Chemistry, 2008, 283(17): 11364-11373. doi: 10.1074/jbc.M710106200 [50] ILG A, BRUNO M, BEYER P, et al. Tomato Carotenoid Cleavage Dioxygenases 1a and 1b: Relaxed Double Bond Specificity Leads to a Plenitude of Dialdehydes, Mono-Apocarotenoids and Isoprenoid Volatiles[J]. FEBS Open Bio, 2014, 4(6): 584-593.