-
开放科学(资源服务)标志码(OSID):
-
百合是百合科(Liliaceae)百合属(Lilium)多年生草本球根植物,是世界上具有重要经济价值的观赏植物之一,可用作鲜切花、盆栽花卉和花园造景,一些百合品种也作为食用球茎和药源植物被广泛种植[1-2]. 百合生长过程中易受到多种病害的威胁,常发生真菌性病害如灰霉病、立枯病、炭疽病、斑点病、疫病以及病毒病等,给百合生产带来巨大的经济损失[3-5].
在病原体攻击下,植物已经进化出不同的防御机制以便在逆境中生存,除了植物已形成的有效结构和化学屏障的组成型防御机制外,植物还具有诱导型防御机制,在病原体攻击时被诱导. 诱导型防御机制包括细胞壁交联、过敏性反应、活性氧(ROS)的产生和次生代谢物的积累,以及病程相关蛋白(Pathogenesis-related Proteins,PRP或PRs)的产生[6-8]. 病程相关蛋白是研究较为深入的植物防御蛋白之一,是植物防御系统的核心组成部分[9-10]. 根据其蛋白质序列的相似性、酶活性和其他生物学特征将PR蛋白分为17个家族[11];其中PR10家族是该家族的重要成员,具有抗真菌、抗细菌和抗病毒等活性[12-14]. 迄今为止,已经从70多种植物中分离出100多个PR10蛋白和PR10基因序列[15]. 在玉米中研究发现PR10蛋白可作为抵抗不同真菌和病原菌的抗菌剂,并可应用于生产抗真菌药物或通过转基因获得抗真菌植株[12]. 在欧洲李感染褐腐病期间发现其PR10蛋白的转录本水平升高,并分析发现PR10可能与真菌病害抗性有关[16]. 在芭蕉中,PR10基因的编码蛋白均具有β-1,3-葡聚糖酶和核糖核酸酶活性,并能抑制烟曲霉的生长[15].
为研究百合“索邦”PR10基因的生物学功能,本研究在研究室已构建的灰霉菌(Botrytis elliptica)接种后不同时间百合“索邦”叶片的转录组数据库[17]中筛选获得受病菌侵染后显著诱导表达的病程相关蛋白基因LhSorPR10-2,并克隆得到该基因的全长序列. 通过实时定量PCR分析LhSorPR10-2在百合“索邦”不同组织中的表达模式,以及病原菌处理、激素处理和高低温处理后该基因的诱导表达情况,并对其启动子的顺式作用元件进行分析. 本研究旨在了解百合PR10基因的有关特性及在抗病防御反应中的作用,为今后揭示该基因的抗性分子机制提供理论基础.
Cloning and Analysis of Pathogenesis-related Protein Gene LhSorPR10-2 from 'Sorbonne' Lily
-
摘要: 病程相关蛋白(Pathogenesis-related Proteins,PR)是植物在受病原物侵染过程中诱导产生的一类蛋白. 为研究百合“索邦”PR10基因的生物学功能,本研究在灰霉菌(Botrytis elliptica)处理不同时间的百合“索邦”叶片转录组数据库中筛选获得显著诱导表达的一个病程相关蛋白PR10基因,命名为“LhSorPR10-2”,并对其进行生物信息学分析、表达模式分析及其启动子克隆分析. 结果显示:LhSorPR10-2全长761 bp,开放阅读框为474 bp,编码158个氨基酸,等电点为5.72. LhSorPR10-2在百合“索邦”中的表达具有组织特异性,在叶中表达量最高;该基因可被病原菌椭圆葡萄孢(Botrytis elliptica)和尖孢镰刀菌(Fusariumoxy sporum)诱导上调表达,并能被植物激素茉莉酸甲酯(MeJA)、水杨酸(SA)和乙烯利(ETH)诱导响应以及高温(50 ℃)和低温(0 ℃)胁迫诱导表达. 另外,启动子区的顺式作用元件分析显示LhSorPR10-2启动子区含有大量与光信号、植物激素、胁迫和分生组织等相关的功能域,推测其可能在生物及非生物胁迫响应过程中发挥重要作用. 本研究旨在了解百合“索邦”PR10基因的有关特性及在抗病防御反应中的作用,为今后揭示该基因的抗性分子机制提供理论基础.Abstract: Pathogenesis-related proteins (PR) are a class of proteins induced by pathogens in plants. In order to study the biological function of PR10 gene, a pathogenesis-related protein PR10 gene named 'LhSorPR10-2' was screened from the transcriptome database of 'Sorbonne' lily leaves treated with Botrytis elliptica for different period of time. Bioinformatics analysis, expression pattern analysis and promoter analysis were carried out. The results showed that the total length of LhSorPR10-2 was 761 bp with a 474 bp open reading frame, encoding 158 amino acids, and the isoelectric point was 5.72. The expression of LhSorPR10-2 in 'Sorbonne' lily was tissue-specific, which had the highest expression in leaves. The expression of this gene could be induced by Botrytis elliptica and Fusariumoxy sporum, also by phytohormones such as methyl jasmonate (MeJA), salicylic acid (SA) and ethephon (ETH) and by temperature stresses such as high temperature (50 ℃) and low temperature (0 ℃). In addition, cis-acting element analysis of the promoter region showed that the promoter region of LhSorPR10-2 contained a large number of functional domains related to light signals, phytohormones, stress and meristems, which may play an important role in the process of biotic and abiotic stress response. The aim of this study was to understand the characteristics of PR10 gene in 'Sorbonne' lily and its role in disease resistance and defense response, and to provide a theoretical basis for revealing the molecular mechanism of stress tolerance in the future.
-
Key words:
- lily /
- Pathogenesis-related Proteins /
- gene clone /
- expression analysis /
- promoter .
-
表 1 不同用途的引物序列
用途 基因 引物序列(5′~3′) 扩增cDNA LhSorPR10-2-cDNA F:GGAGCAGGTGAATTAAGCAT R:CAGAACCATGCCTTTCTCAC 扩增DNA LhSorPR10-2-DNA F:CATCGACTGGCCCAATCTC R:ACCATCACCATCGCCTCCT 荧光定量PCR qLhSorPR10-2 F:GCTTCCGCACACTTCAAGATTGAG R:ATCTCCTGAAACCGCTCCCACT qLhSorActin F:CACACTGGTGTCATGGTTGG R:ATCTCCTGAAACCGCTCCCACT qLhSor18s F:CGCAAGGCTGAAACTTAAAGG R:CAGACAAATCGCTCCACCAAC 启动子克隆 LhSorPR10-2-pro F:ACAGGAGATCACTCGATGTATATGTG R:CAGTCGATGAGGGCAGCCTT 表 2 生物信息学分析软件
分析项目 软件名称 网址/出版商 同源序列比对 BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi 蛋白二级结构预测 SOPMA https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html 蛋白亚细胞定位预测 Softberry http://www.softberry.com/ 蛋白信号肽预测 SignaIP-5.0 http://www.cbs.dtu.dk/services/SignalP/ 蛋白跨膜结构分析 TMHMM 2.0 http://www.cbs.dtu.dk/services/TMHMM/ 蛋白基本性质分析 ProtParam https://web.expasy.org/protparam/ 蛋白疏水性分析 ProtScale https://web.expasy.org/protscale/ 氨基酸多序列比对 DNAMAN汉化版 Lynnon公司 蛋白进化树构建 MEGA7.0 https://www.megasoftware.net/megaccusage.php 启动子顺式作用元件分析 PlantCARE http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ 表 3 LhSorPR10-2基因的启动子顺式作用元件分析
顺式作用元件种类 数量 保守序列 生物学功能 AE-box 1 AGAACTT 光响应模块的一部分 ARE 3 AAACCA 无氧诱导所必需的顺式作用调节元件 CAAT-box 17 CAAT或CAACCAACTCC 启动子和增强子区域的共同顺式作用元件 GATA-motif 1 GATAGGA 光响应元件的一部分 GCN4_motif 1 TGAGTCA 参与胚乳表达的顺式调控元件 GT1-motif 1 GGTTAA 光响应元件 O2-site 2 GATGACATGG 参与玉米醇溶蛋白代谢的顺式作用调节元件 P-box 1 CCTTTTG 赤霉素反应元件 Sp1 1 GGGCGG 光响应元件 TATA-box 21 TATACA或TATA 转录起始点-30附近的核心启动子元件 TCT-motif 1 TCTTAC 光响应元件的一部分 Unnamed_1 2 CGTGG或GAATTTAATTAA 60K蛋白结合位点 MYB 6 TAACCA或CAACCA 功能未知 MYB-like sequence 3 TAACCA 功能未知 MYC 3 CATGTG 功能未知 -
[1] BAKHSHAIE M, KHOSRAVI S, AZADI P, et al. Biotechnological Advances in Lilium[J]. Plant Cell Reports, 2016, 35(9): 1799-1826. doi: 10.1007/s00299-016-2017-8 [2] LI J W, ZHANG X C, WANG M R, et al. Development, Progress and Future Prospects in Cryobiotechnology of Lilium Spp[J]. Plant Methods, 2019, 15: 125. doi: 10.1186/s13007-019-0506-9 [3] GAO X. Evaluation of Resistance to Botrytis Elliptica in Lilium Hybrid Cultivars[J]. Plant Physiology and Biochemistry, 2018, 123: 392-399. doi: 10.1016/j.plaphy.2017.12.025 [4] 陈鸣丽. 百合栽培与病虫害防治技术分析[J]. 现代园艺, 2020, 43(22): 17-18. doi: 10.3969/j.issn.1006-4958.2020.22.008 [5] 叶世森, 林芳, 宋建英. 百合病害的研究综述[J]. 西南林学院学报, 2005, 25(3): 84-88. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YNLX200503020.htm [6] SELS J. Plant Pathogenesis-Related (PR) Proteins: a Focus on PR Peptides[J]. Plant Physiology and Biochemistry, 2008, 46(11): 941-950. doi: 10.1016/j.plaphy.2008.06.011 [7] SZALONTAI B, JAKAB G. Differential Expression of PRLIPs, a Pathogenesis-Related Gene Family Encoding Class 3 Lipase-Like Proteins in Arabidopsis[J]. Acta Biologica Hungarica, 2010, 61: 156-171. doi: 10.1556/ABiol.61.2010.Suppl.16 [8] 王诗宇, 王志兴, 张丽丽, 等. 植物防御反应的研究进展[J]. 江苏农业科学, 2021, 49(19): 39-45. doi: 10.15889/j.issn.1002-1302.2021.19.007 [9] HAMAMOUCH N, LI C Y, SEO P J, et al. Expression of Arabidopsis Pathogenesis-Related Genes during Nematode Infection[J]. Molecular Plant Pathology, 2011, 12(4): 355-364. doi: 10.1111/j.1364-3703.2010.00675.x [10] ALMEIDA-SILVA F, VENANCIO T M. Pathogenesis-Related Protein 1 (PR-1) Genes in Soybean: Genome-Wide Identification, Structural Analysis and Expression Profiling under Multiple Biotic and Abiotic Stresses[J]. Gene, 2022, 809: 146013. doi: 10.1016/j.gene.2021.146013 [11] ALI S, GANAI B A, KAMILI A N, et al. Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance[J]. Microbiological Research, 2018, 212-213: 29-37. doi: 10.1016/j.micres.2018.04.008 [12] ZANDVAKILI N, ZAMANI M, MOTALLEBI M, et al. Cloning, Overexpression and in Vitro Antifungal Activity of Zea Mays PR10 Protein[J]. Iranian Journal of Biotechnology, 2017, 15(1): 42-49. doi: 10.15171/ijb.1357 [13] FERNANDES H, MICHALSKA K, SIKORSKI M, et al. Structural and Functional Aspects of PR-10 Proteins[J]. The FEBS Journal, 2013, 280(5): 1169-1199. doi: 10.1111/febs.12114 [14] SLIWIAK J, SIKORSKI M, JASKOLSKI M. PR-10 Proteins as Potential Mediators of Melatonin-Cytokinin Cross-Talk in Plants: Crystallographic Studies of LLPR-10.2B Isoform from Yellow Lupine[J]. The FEBS Journal, 2018, 285(10): 1907-1922. doi: 10.1111/febs.14455 [15] RAJENDRAM A, MOSTAFFA N H, DUMIN W, et al. Dual Activity of Meloidogyne Incognita-Regulated Musa Acuminata Pathogenesis-Related-10 (MaPR-10) Gene[J]. Gene, 2022, 809: 146041. doi: 10.1016/j.gene.2021.146041 [16] EL-KEREAMY A, JAYASANKAR S, TAHERI A, et al. Expression Analysis of a Plum Pathogenesis Related 10 (PR10) Protein during Brown Rot Infection[J]. Plant Cell Reports, 2009, 28(1): 95-102. doi: 10.1007/s00299-008-0612-z [17] CHAI N, XU J, ZUO R M, et al. Metabolic and Transcriptomic Profiling of Lilium Leaves Infected with Botrytis Elliptica Reveals Different Stages of Plant Defense Mechanisms[J]. Frontiers in Plant Science, 2021, 12: 730620. doi: 10.3389/fpls.2021.730620 [18] WANG C S, HUANG J C, HU J H. Characterization of Two Subclasses of PR-10 Transcripts in Lily Anthers and Induction of Their Genes through Separate Signal Transduction Pathways[J]. Plant Molecular Biology, 1999, 40(5): 807-814. doi: 10.1023/A:1006285028495 [19] HSU S W, LIU M C, ZEN K C, et al. Identification of the Tapetum/Microspore-Specific Promoter of the Pathogenesis-Related 10 Gene and Its Regulation in the Anther of Lilium Longiflorum[J]. Plant Science, 2014, 215-216: 124-133. doi: 10.1016/j.plantsci.2013.11.006 [20] 吴林, 李洪雷, 姜玉松, 等. 月季RhPR10.2基因克隆及生物学功能分析[J]. 西南大学学报(自然科学版), 2018, 40(8): 8-15. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2018.08.002 [21] 张响玲, 张延龙, 牛立新, 等. 岷江百合中黄瓜花叶病毒诱导的LrPR10的克隆及表达分析[J]. 园艺学报, 2014, 41(6): 1218-1226. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201406020.htm [22] 赵霄晨. 华东葡萄病程相关蛋白VpPR10.1基因功能分析[D]. 杨凌: 西北农林科技大学, 2012. [23] 卢一鹏, 李伟, 孙楠, 等. 植物病程相关蛋白PR10结构、功能及表达调控的研究进展[J]. 湖北农业科学, 2016, 55(2): 273-279, 284. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201602003.htm [24] BAI X, LONG J, HE X, et al. Molecular Cloning and Characterization of Pathogenesis-Related Protein Family 10 Gene from Spinach (SoPR10)[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(5): 780-786. doi: 10.1080/09168451.2014.910094 [25] GÓMEZ-GÓMEZ L, RUBIO-MORAGA A, AHRAZEM O. Molecular Cloning and Characterisation of a Pathogenesis-Related Protein CsPR10 from Crocus Sativus[J]. Plant Biology (Stuttgart, Germany), 2011, 13(2): 297-303. doi: 10.1111/j.1438-8677.2010.00359.x [26] SOH H C, PARK A R, PARK S, et al. Comparative Analysis of Pathogenesis-Related Protein 10 (PR10) Genes between Fungal Resistant and Susceptible Peppers[J]. European Journal of Plant Pathology, 2012, 132(1): 37-48. doi: 10.1007/s10658-011-9846-7 [27] CHAKRAVARTHI M, SYAMALADEVI D P, HARUNIPRIYA P, et al. A Novel PR10 Promoter from Erianthus Arundinaceus Directs High Constitutive Transgene Expression and is Enhanced Upon Wounding in Heterologous Plant Systems[J]. Molecular Biology Reports, 2016, 43(1): 17-30. doi: 10.1007/s11033-015-3934-2 [28] 刘新亮, 蔡金峰, 王欢利, 等. 银杏GbSAD基因对非生物胁迫的响应及原核表达[J]. 东北林业大学学报, 2015, 43(12): 1-6. doi: 10.3969/j.issn.1000-5382.2015.12.001