-
开放科学(资源服务)标志码(OSID):
-
犬弓首蛔虫(Toxocara canis)是犬科动物和猫科动物中最普遍的胃肠道寄生线虫,其感染性虫卵进入终末宿主的小肠内可发育为成虫[1-2]. 人类及其他转续宿主摄入则无法完成其生命周期,幼虫在组织内迁移数月或数年,对宿主机体造成严重损害. 人类弓首蛔虫幼虫移行损害的主要器官有肝脏、肺、眼、脑等,引起眼睛和内脏幼虫移行症、神经弓首蛔虫病、隐性弓首蛔虫病等,表现为持续的嗜酸性粒细胞增多,出现视网膜炎、哮喘、癫痫、脑膜炎等症状[3-5],严重危害人类健康.
黏蛋白(Mucins,MUCs)是一类高分子量糖蛋白,其分子由主链和糖基侧链通过O-糖苷键连接组成,主链富含丝氨酸和苏氨酸作为糖基化连接的位点. MUCs包含膜结合型黏蛋白(MUC1,MUC4,MUC16)和分泌型黏蛋白(MUC2,MUC5AC,MUC5B),广泛分布于哺乳动物黏膜表面为其提供保护,并参与细胞分化、粘附、信号转导和免疫反应等多种生物学过程,其异常表达或过表达与肿瘤的发生有关[6-7]. 此外,该蛋白在宿主-寄生虫相互作用的过程中也发挥重要作用. 例如,克氏锥虫的黏蛋白通过与宿主巨噬细胞的L-选择素相结合,抑制白细胞介素-2的产生和T细胞受体相关信号转导蛋白的酪氨酸磷酸化,从而抑制宿主的炎性反应[8];在曼氏血吸虫中,分泌型黏蛋白MUC2形成可脱落的表面涂层,保护寄生虫免受抗体和嗜酸性粒细胞的攻击[9].
目前,对于犬弓首蛔虫黏蛋白2的研究较少. 本研究运用分子生物学技术,首先克隆Tc-muc-2基因并进行序列分析;同时构建Tc-muc-2/pCold TF原核表达载体并制备多克隆抗体,以期为进一步研究Tc-MUC-2的生物学功能奠定基础.
Prokaryotic Expression and Polyclonal Antibody Preparation of Toxocara canis Mucin-2
-
摘要: 根据犬弓首蛔虫(Toxocara canis)黏蛋白2的基因组数据(GenBank:AF167707),以T. canis成虫的基因组DNA为模板扩增Tc-muc-2基因并进行序列分析;同时构建Tc-muc-2/pCold TF原核表达载体,采用ITPG诱导表达,对重组蛋白进行纯化并制备多克隆抗体. 结果显示Tc-muc-2基因全长序列为549 bp,共编码183个氨基酸;多重序列比对发现犬弓首蛔虫的黏蛋白均具有SKhT保守结构域,且含有不同串联重复序列组成的黏蛋白结构域;种系发育分析结果显示与猪蛔虫进化关系较近;SDS-PAGE结果表明重组蛋白Tc-MUC-2相对分子质量为7.5×104,以可溶性形式表达;利用Ni-NTA亲和层析柱纯化蛋白,以250 mmol/L咪唑进行洗脱时可获得高纯度目的蛋白;将纯化后的重组蛋白免疫新西兰大白兔以制备多克隆抗体,间接ELISA结果显示其多克隆抗体效价大于1∶512 000,表明重组蛋白的免疫原性较好,SDS-PAGE结果显示纯化后的抗体纯度高于95%,Western Blot结果显示抗体能与Tc-MUC-2蛋白特异性结合,表明抗体特异性高.Abstract: The Toxocara canis mucin-2 (Tc-muc-2) gene was amplified with the adult worm as template according to the genomic data of Tc-muc-2 (GenBank: AF167707) and analyzed. The prokaryotic expression vectorTc-muc-2/pCold TF was constructed and induced by IPTG. The recombinant protein was purified and polyclonal antibody was prepared. The results showed that the full-length sequence of the Tc-muc-2 gene was 549 bp, which encoded 183-amino-acid. Multiple alignment found that the mucins of T. canis contained a conserved SKhT domain and a mucin domain which composed of different tandem repeats. The phylogenetic tree analysis suggested that Tc-MUC-2 was closely related to the sequence of Ascaris suum. SDS-PAGE analysis showed that the molecular weight of the recombinant protein Tc-MUC-2 was about 7.5×104 and in soluble form. The protein was purified by Ni-NTA affinity chromatography column by eluting with 250 mmol/L imidazole. The purified recombinant protein was used to immunize the New Zealand white rabbits to prepare polyclonal antibody. Indirect ELISA result showed the titer of the polyclonal antibody was higher than 1∶512 000, indicating that the recombinant protein had good immunogenicity. The SDS-PAGE result showed that the purity of antibody was higher than 95%, and the Western Blot result showed that antibody could specifically recognize Tc-MUC-2, indicating that the antibody had good specificity.
-
Key words:
- Toxocara canis /
- MUC-2 /
- clone /
- prokaryotic expression /
- polyclonal antibody .
-
表 1 多克隆抗体效价测定
编号 稀释度 A280 nm 编号 稀释度 A280 nm Tc-MUC-2 Tc-MUC-2 1 500 3.62 7 32 000 3.13 2 1 000 3.54 8 64 000 3.05 3 2 000 3.52 9 128 000 3.01 4 4 000 3.44 10 256 000 2.85 5 8 000 3.32 11 512 000 2.83 6 16 000 3.23 12 空白 0.05 -
[1] MAIZELS R M, TETTEH K K, LOUKAS A. Toxocara canis: Genes Expressed by the Arrested Infective Larval Stage of a Parasitic Nematode[J]. International Journal for Parasitology, 2000, 30(4): 495-508. doi: 10.1016/S0020-7519(00)00022-9 [2] SANTOS L M D, DE MOURA M Q, AZEVEDO M L, et al. Reactivity of Recombinant Toxocara canis TES-30/120 in Experimentally Infected Mice[J]. Parasite Immunology, 2018, 40(8): e12568. doi: 10.1111/pim.12568 [3] 李芳, 陈绍基, 谭纯, 等. 犬弓首蛔虫Tc-PEBP的分子特性及组织表达分析[J]. 西南大学学报(自然科学版), 2022, 44(3): 75-82. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2022.03.009 [4] LU C Y, LAI S C, LEE H H, et al. Matrix Metalloproteinases Activation in Toxocara canis Induced Pulmonary Pathogenesis[J]. Journal of Microbiology, Immunology, and Infection, 2021, 54(6): 1147-1153. doi: 10.1016/j.jmii.2020.07.022 [5] WANGCHUK P, LAVERS O, WISHART D S, et al. Excretory/Secretory Metabolome of the Zoonotic Roundworm Parasite Toxocara canis[J]. Biomolecules, 2020, 10(8): 1157. doi: 10.3390/biom10081157 [6] DEA YAMASHITA M S, MELO E O. Mucin 2 (MUC2) Promoter Characterization: an Overview[J]. Cell and Tissue Research, 2018, 374(3): 455-463. doi: 10.1007/s00441-018-2916-9 [7] JONCKHEERE N, SKRYPEK N, FRÉNOIS F, et al. Membrane-Bound Mucin Modular Domains: From Structure to Function[J]. Biochimie, 2013, 95(6): 1077-1086. doi: 10.1016/j.biochi.2012.11.005 [8] NUNES M P, FORTES B, SILVA-FILHO J L, et al. Inhibitory Effects ofTrypanosoma cruzi Sialoglycoproteins on CD4+ T cells are Associated with Increased Susceptibility to Infection[J]. PLoS One, 2013, 8(10): e77568. doi: 10.1371/journal.pone.0077568 [9] GUZMAN ARANGUEZ A, ARGVESO P. Structure and Biological Roles of Mucin-Type O-glycans at the Ocular Surface[J]. The Ocular Surface, 2010, 8(1): 8-17. doi: 10.1016/S1542-0124(12)70213-6 [10] 刘琳, 郭晓银, 何彦侠, 等. 腹泻仔猪肠道大肠杆菌分离鉴定与毒力基因及耐药分析[J]. 东北农业大学学报, 2022, 53(6): 65-75. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-DBDN202206008.htm [11] 江艾耘, 李芳, 陈绍基, 等. 犬弓首蛔虫MUC-1基因的克隆及序列分析[J]. 西南大学学报(自然科学版), 2020, 42(3): 81-87. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.03.011 [12] ROKHSEFAT S, LIN A F, COMELLI E M. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications[J]. Digestive Diseases and Sciences, 2016, 61(6): 1473-1486. doi: 10.1007/s10620-016-4032-6 [13] YANG S W, YU M. Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity[J]. Journal of Inflammation Research, 2021, 14: 3171-3183. doi: 10.2147/JIR.S318327 [14] BERGSTROM K S B, XIAL L. Mucin-Type O-Glycans and Their Roles in Intestinal Homeostasis[J]. Glycobiology, 2013, 23(9): 1026-1037. doi: 10.1093/glycob/cwt045 [15] NIEUW AMERONGEN A V, BOLSCHER J G, BLOEMENA E, et al. Sulfomucins in the Human Body[J]. Biological Chemistry. 1998, 379(1): 1-18. doi: 10.1515/bchm.1998.379.1.1 [16] SHAFEE T, MITCHELL M L, NORTON R S. Mapping the Chemical and Sequence Space of the ShKT Superfamily[J]. Toxicon, 2019, 165: 95-102. doi: 10.1016/j.toxicon.2019.04.008 [17] CHHABRA S, CHANG S C, NGUYEN H M, et al. Kv1.3 Channel-Blocking Immunomodulatory Peptides From Parasitic Worms: Implications for Autoimmune Diseases[J]. FASEB Journal, 2014, 28(9): 3952-3964. doi: 10.1096/fj.14-251967 [18] 罗永莉, 朱宏宏, 江艾耘, 等. 犬弓首蛔虫卵黄原蛋白DUF1943结构域的克隆及原核表达[J]. 西南大学学报(自然科学版), 2018, 40(1): 15-20. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2018.01.003 [19] HAYASHI K, KOJIMA C. pCold-GST Vector: a Novel cold-shock Vector Containing GST Tag for Soluble Protein Production[J]. Protein Expression and Purification, 2008, 62(1): 120-127. doi: 10.1016/j.pep.2008.07.007 [20] LI J H, HAN Q, ZHANG T, et al. Expression of Soluble Native Protein in Escherichia Coli using a Cold-Shock SUMO Tag-Fused Expression Vector[J]. Biotechnology Reports, 2018, 19: e00261. doi: 10.1016/j.btre.2018.e00261