-
开放科学(资源服务)标志码(OSID):
-
金银花是我国常用的药用植物之一,在世界各地均有种植,主要分布在东亚的中国、韩国和日本等国家,在中国常使用金银花的花蕾和花入药,而日本常使用金银花的茎和叶入药[1]. 金银花具有清热解毒、疏散风热等功效,在国内分布广,品种多,使用量大. 现已鉴定出金银花具有多种活性成分,包括挥发油、黄酮类、有机酸类和三萜类化合物等[2],可用于治疗肺结核、肺炎、急性细菌性痢疾等疾病[3]. 金银花除了在医学方面有重要的应用外,在化妆品、食品和健康饮料方面也有广泛的应用价值[4-5]. 此外,金银花还经常作为观赏植物呈现在大众面前[1]. 金银花的药用、养生和观赏价值决定了其具有较大的市场开发利用前景.
WRKY转录因子是植物特有的一类转录因子,因其具有高度保守的WRKYGQK氨基酸序列而得名[6]. WRKY基因最初在甘薯中被发现[7],后期的研究中发现WRKY基因家族包含3个亚家族[8],并且第2个亚家族又可进一步细分为5个次亚家族[9]. 有研究表明WRKY转录因子能识别靶基因的W-box[(T)TGAC(C/T)] 序列并进行特异性结合,进而调控靶基因的功能[10]. 高等植物的WRKY转录因子在不同组织中发挥着重要作用. WRKY基因可以调节植物的生长发育,如拟南芥的WRKY46,WRKY54和WRKY70可以通过油菜素内酯调控其生长发育过程[11]. 此外,WRKY转录因子还参与非生物胁迫反应,如干旱、损伤、水分和盐胁迫等[12-14]. 在拟南芥中过表达WRKY30可增强盐胁迫的抗性,在水稻中过表达WRKY47可以显著增强水稻对干旱的耐受性. WRKY蛋白在应答生物胁迫(包括细菌、真菌和病毒病原体)方面也发挥重要作用[15-16],如拟南芥的WRKY22能够通过水杨酸和茉莉酸信号调控其对蚜虫的易感性[17]. 综上所述,WRKY基因在植物的生长发育、逆境应答方面发挥了重要的作用.
目前,越来越多植物的WRKY家族基因被鉴定且相关功能被报道,如刺梨[18]、玉米[19]、茄子[6]、菠萝[20]和番茄[21]等,但金银花的WRKY基因家族鉴定还未见报道. 本研究基于WRKY家族的种子序列对金银花WRKY家族基因进行鉴定,并基于公共转录组数据对其功能进行预测,为将来开展金银花WRKY基因的功能研究奠定基础.
Identification and Functional Analysis of WRKY Gene Family of Lonicera japonica Thunb.
-
摘要: WRKY转录因子参与调控植物的生长发育、激素应答及逆境应答等过程. 基于金银花的基因组数据信息鉴定了WRKY基因家族成员,并分析了WRKY转录因子序列的保守结构域、启动子特点、进化特征、基因重复情况以及在两组不同转录组中的表达情况. 结果表明:金银花共有46个WRKY基因,从进化特点上可分为3个亚家族,基因数量分别为16,13,17个. WRKY家族成员的蛋白分子量在15 963.55~80 967.23 Da之间,氨基酸数量在149~748之间,等电点在4.75~9.71之间,不稳定系数在40.97~67.76之间. 参与生长发育、激素应答的元件出现在金银花WRKY基因的启动子区域. 通过分析两组不同的表达谱数据发现,WRKY转录因子可能参与了调控金银花的开花过程. 研究为进一步开展金银花WRKY家族基因的功能研究奠定了基础.Abstract: WRKY transcription factors play an important role in plants, and they participate in the regulation of plant growth and development, hormone and stress response. In this study, the WRKY gene family was identified based on the genomic information of Lonicera japonica, and the conserved domain, promoter characteristics, evolutionary characteristics, gene duplication and expression of WRKY transcription factors in two different transcriptomes were analyzed. Finally, 46 WRKY genes were identified from Lonicera japonica, which could be divided into three subfamilies: Ⅰ(16), Ⅱ(13), and Ⅲ(17) by evolutionary analysis. The molecular weight of WRKY proteins ranged from 15 963.55 to 80 967.23 Da, the number of amino acids ranged from 149 to 748, the isoelectric point ranged from 4.75 to 9.71, and the instability coefficient ranged from 40.97 to 67.76. Many elements involved in growth and development, and hormone response present in the promoter region of WRKY in Lonicera japonica. By analyzing two different expression profiles, we found that WRKY transcription factors might regulate the flowering process. Our research will lay a foundation for further functional studies of WRKY genes in Lonicera japonica.
-
Key words:
- Lonicera japonica /
- WRKY gene /
- functional analysis .
-
表 1 金银花WRKY基因家族及理化性质的预测
基因名称 分子量/Da 氨基酸数量 等电点 不稳定指数 脂肪系数 平均亲疏水性 LjWRKY1 27 900.57 243 5.38 54.55 41.69 -1.147 LjWRKY2 38 009.93 340 9.54 54.80 65.65 -0.764 LjWRKY3 49 174.20 439 8.15 61.94 52.85 -0.917 LjWRKY4 64 394.07 589 6.56 40.97 64.48 -0.765 LjWRKY5 54 869.73 491 8.36 43.26 69.16 -0.697 LjWRKY6 64 764.46 593 6.62 54.01 55.83 -0.793 LjWRKY7 61 331.69 564 5.11 65.24 59.52 -0.698 LjWRKY8 47 826.57 439 4.96 50.98 58.91 -0.738 LjWRKY9 30 631.95 267 5.24 67.16 55.17 -0.960 LjWRKY10 53 895.25 492 7.26 48.69 61.59 -0.550 LjWRKY11 24 131.10 212 8.88 46.55 55.19 -0.897 LjWRKY12 57 302.67 511 7.23 60.59 44.99 -1.054 LjWRKY13 71 865.53 653 8.83 43.60 64.18 -0.782 LjWRKY14 36 578.36 325 5.39 48.14 58.83 -0.699 LjWRKY15 33 584.41 303 4.85 54.99 67.00 -0.547 LjWRKY16 59 613.03 549 6.57 47.78 61.04 -0.691 LjWRKY17 36 950.09 333 7.59 67.76 48.92 -0.876 LjWRKY18 38 901.82 349 5.34 48.55 59.20 -0.709 LjWRKY19 38 774.78 350 9.63 51.03 63.51 -0.706 LjWRKY20 35 297.41 320 8.42 50.53 67.66 -0.699 LjWRKY21 58 334.62 530 6.29 53.19 58.19 -0.783 LjWRKY22 52 491.36 473 6.55 46.36 60.87 -0.689 LjWRKY23 32 772.24 293 6.01 57.22 55.19 -0.859 LjWRKY24 38 549.84 358 5.08 59.66 44.72 -0.912 LjWRKY25 61 061.56 562 6.81 47.97 62.88 -0.678 LjWRKY26 35 745.53 325 9.59 44.64 67.51 -0.599 LjWRKY27 32 006.41 291 9.59 43.22 68.69 -0.542 LjWRKY28 52 099.74 477 6.00 52.74 62.81 -0.703 LjWRKY29 42 251.08 378 9.45 48.48 66.80 -0.705 LjWRKY30 39 656.05 355 4.90 51.82 68.68 -0.648 LjWRKY31 17 683.53 164 5.08 42.93 48.84 -0.573 LjWRKY32 30 114.10 266 9.19 51.63 71.05 -0.811 LjWRKY33 33 376.28 298 5.93 50.36 67.99 -0.642 LjWRKY34 35 598.65 321 5.82 52.72 62.27 -0.685 LjWRKY35 26 887.96 248 4.86 48.48 58.15 -0.463 LjWRKY36 61 996.34 569 6.58 50.19 60.97 -0.771 LjWRKY37 46 551.79 413 7.63 55.49 69.13 -0.956 LjWRKY38 80 967.23 748 6.02 55.11 53.48 -0.791 LjWRKY39 23 767.73 224 9.71 47.66 56.21 -0.623 LjWRKY40 23 767.73 224 9.71 47.66 56.21 -0.623 LjWRKY41 37 579.77 336 7.12 53.72 65.24 -0.858 LjWRKY42 21 931.29 200 6.13 51.04 41.00 -0.876 LjWRKY43 35 182.18 305 5.52 47.68 63.61 -0.738 LjWRKY44 56 411.12 514 7.04 56.12 62.78 -0.730 LjWRKY45 18 324.90 167 4.75 60.82 54.31 -0.906 LjWRKY46 15 963.55 149 9.58 63.78 59.60 -0.786 -
[1] LI Y K, LI W, FU C M, et al. Lonicerae japonicae Flos and Lonicerae Flos: a Systematic Review of Ethnopharmacology, Phytochemistry and Pharmacology[J]. Phytochemistry Reviews, 2020, 19(1): 1-61. doi: 10.1007/s11101-019-09655-7 [2] 郑敏, 彭敬东, 王丽峰. 金银花和金银花露中绿原酸和4种黄酮含量的测定[J]. 西南大学学报(自然科学版), 2009, 31(1): 45-48. doi: 10.13718/j.cnki.xdzk.2009.01.026 doi: http://xbgjxt.swu.edu.cn/article/id/jsunsxnnydxxb200901011 doi: 10.13718/j.cnki.xdzk.2009.01.026 [3] 付国芳, 章德胜, 吴迪. 浅金银花的化学成分以及功效研究[J]. 药物与人, 2014, 27(3): 36, 38. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YWYR201403021.htm [4] FANG H L, QI X W, LI Y M, et al. De Novo Transcriptomic Analysis of Light-induced Flavonoid Pathway, Transcription Factors in the Flower Buds of Lonicera japonica[J]. Trees (Berlin, Germany: West), 2020, 34(1): 267-283. doi: 10.1007/s00468-019-01916-4 [5] SHANG X F, PAN H, LI M X, et al. Lonicera japonica Thunb. : Ethnopharmacology, Phytochemistry and Pharmacology of an Important Traditional Chinese Medicine[J]. Journal of Ethnopharmacology, 2011, 138(1): 1-21. doi: 10.1016/j.jep.2011.08.016 [6] YANG Y, LIU J, ZHOU X H, et al. Identification of WRKY Gene Family and Characterization of Cold Stress-Responsive WRKY Genes in Eggplant[J]. Peer J, 2020(8): e8777. [7] ISHIGURO S, NAKAMURA K. Characterization of a cDNA Encoding a Novel DNA-binding Protein, SPF1, that Recognizes SP8 Sequences in the 5' Upstream Regions of Genes Coding for Sporamin and Beta-amylase from Sweet Potato[J]. Molecular & General Genetics: MGG, 1994, 244(6): 563-571. [8] EULGEM T, RUSHTONP J, ROBATZEK S, et al. The WRKY Superfamily of Plant Transcription Factors[J]. Trends in Plant Science, 2000, 5(5): 199-206. doi: 10.1016/S1360-1385(00)01600-9 [9] RUSHTONP J, SOMSSICH I E, RINGLER P, et al. WRKY Transcription Factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. doi: 10.1016/j.tplants.2010.02.006 [10] YU D, CHEN C, CHEN Z. Evidencefor an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression[J]. The Plant Cell, 2001, 13(7): 1527-1540. doi: 10.1105/TPC.010115 [11] CHEN J N, NOLAN T M, YE H X, et al. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors are Involved in Brassinosteroid-regulated Plant Growth and Drought Responses[J]. The Plant Cell, 2017, 29(6): 1425-1439. [12] YOOS J, KIM S H, KIM M J, et al. Involvement of the OsMKK4-OsMPK1 Cascade and Its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice[J]. The Plant Pathology Journal, 2014, 30(2): 168-177. doi: 10.5423/PPJ.OA.10.2013.0106 [13] DIAOW P, SNYDER J C, WANG S B, et al. Genome-wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L[J]. Frontiers in Plant Science, 2016(7): 211. [14] JUNTAWONG P, SIRIKHACHORNKIT A, PIMJAN R, et al. Elucidation of the Molecular Responses to Waterlogging in Jatropha Roots by Transcriptome Profiling[J]. Frontiers in Plant Science, 2014, 5(1): 658. [15] LEVÉE V, MAJOR I, LEVASSEUR C, et al. Expression Profiling and Functional Analysis of Populus WRKY23 Reveals a Regulatory Role in Defense[J]. New Phytologist, 2009, 184(1): 48-70. doi: 10.1111/j.1469-8137.2009.02955.x [16] PANDEYS P, SOMSSICH I E. The Role of WRKY Transcription Factors in Plant Immunity[J]. Plant Physiology, 2009, 150(4): 1648-1655. doi: 10.1104/pp.109.138990 [17] KLOTHK J, WIEGERS G L, BUSSCHER-LANGE J, et al. AtWRKY22 Promotes Susceptibility to Aphids and Modulates Salicylic Acid and Jasmonic Acid Signalling[J]. Journal of Experimental Botany, 2016, 67(11): 3383-3396. doi: 10.1093/jxb/erw159 [18] 田媛, 郑锦城. 刺梨WRKY基因家族鉴定及其在不同组织中的表达分析[J]. 分子植物育种, 2021-08-03. [19] HU W J, REN Q Y, CHEN Y L, et al. Genome-wide Identification and Analysis of WRKY Gene Family in Maize Provide Insights into Regulatory Network in Response to Abiotic Stresses[J]. BMC Plant Biology, 2021, 21(1): 427. doi: 10.1186/s12870-021-03206-z [20] XIE T, CHEN C J, LI C H, et al. Genome-wide Investigation of WRKY Gene Family in Pineapple: Evolution and Expression Profiles during Development and Stress[J]. BMC Genomics, 2018, 19(1): 490. doi: 10.1186/s12864-018-4880-x [21] 魏娟娟, 杨伟, 潘宇, 等. 番茄WRKY41基因的克隆、表达分析与转基因植株的获得[J]. 西南大学学报(自然科学版), 2017, 39(1): 46-54. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2017.01.008 [22] EL-GEBALI S, MISTRY J, BATEMAN A, et al. The Pfam Protein Families Database in 2019[J]. Nucleic Acids Research, 2018, 47(D1): 427-432. [23] POTTERS C, LUCIANI A, EDDY S R, et al. HMMER Web Server: 2018 Update[J]. Nucleic Acids Research, 2018, 46(W1): 200-204. doi: 10.1093/nar/gky448 [24] LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: The Conserved Domain Database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): 265-268. doi: 10.1093/nar/gkz991 [25] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7. 0 for Bigger Datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054 [26] WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. doi: 10.1093/nar/gkr1293 [27] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009 [28] LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. doi: 10.1093/nar/30.1.325 [29] XIAO Q Q, LI Z Q, QU M M, et al. LjaFGD: Lonicera japonica Functional Genomics Database[J]. Journal of Integrative Plant Biology, 2021, 63(8): 1422-1436. doi: 10.1111/jipb.13112 [30] LETUNIC I, BORK P. Interactive Treeof Life (iTOL) V5: an Online Tool for Phylogenetic Tree Display and Annotation[J]. Nucleic Acids Research, 2021, 49(W1): 293-296. doi: 10.1093/nar/gkab301 [31] YANGF S, NIE S, LIU H, et al. Chromosome-Level Genome Assembly of a Parent Species of Widely Cultivated Azaleas[J]. Nature Communications, 2020(11): 5269. [32] GAOY F, LIU J K, YANG F M, et al. The WRKY Transcription Factor WRKY8 Promotes Resistance to Pathogen Infection and Mediates Drought and Salt Stress Tolerance in Solanum lycopersicum[J]. Physiologia Plantarum, 2020, 168(1): 98-117. doi: 10.1111/ppl.12978 [33] SONG H, WANG P F, HOU L, et al. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean[J]. Frontiers in Plant Science, 2016(7): 9. [34] PU X D, LI Z, TIAN Y, et al. The Honeysuckle Genome Provides Insight into the Molecular Mechanism of Carotenoid Metabolism Underlying Dynamic Flower Coloration[J]. New Phytologist, 2020, 227(3): 930-943. doi: 10.1111/nph.16552 [35] NURUZZAMAN M, CAO H Z, XIU H, et al. Transcriptomics-Based Identification of WRKY Genes and Characterization of a Salt and Hormone-responsive PgWRKY1 Gene in Panax ginseng[J]. Acta Biochimica et Biophysica Sinica, 2015, 48(2): 117-131. [36] NAN H, GAOL Z. Genome-Wide Analysis of WRKY Genes and Their Response to Hormone and Mechanic Stresses in Carrot[J]. Frontiers in Genetics, 2019(10): 363. [37] doi: https://www.sciencedirect.com/science/article/pii/S0378111918308606 FAN C J, YAO H R, QIU Z F, et al. Genome-wide Analysis of Eucalyptus Grandis WRKY Genes Family and Their Expression Profiling in Response to Hormone and Abiotic Stress Treatment[J]. Gene, 2018, 678: 38-48. [38] SUN W J, MA Z T, CHEN H, et al. Genome-wide Investigation of WRKY Transcription Factors in Tartary Buckwheat (Fagopyrum tataricum) and Their Potential Roles in Regulating Growth and Development[J]. Peer J, 2020(8): e8727.