-
开放科学(资源服务)标志码(OSID):
-
硼是植物生长发育必不可少的微量营养元素,参与植物的多种生理过程,如碳水化合物代谢、核酸合成、细胞骨架蛋白和氮代谢,同时还参与植物体内酶和生长调节剂的反应过程[1]. 根据全国第二次土壤普查数据,我国低硼和缺硼土壤面积很大,缺硼耕地土壤多达0.33亿hm2以上[2],土壤硼含量呈现由北向南、由西向东逐渐降低的趋势,我国的低硼和缺硼地区主要集中在南方红壤区,干旱和半干旱地区土壤硼元素的含量高于湿润地区[3]. 有研究表明,我国西南地区土壤缺硼现象也较为严重,重庆市土壤处于极度缺硼和缺硼状态,有效硼普遍严重缺乏[4].
李梅兰等[5]研究发现,相较于正常硼肥(4 mg/L)处理,番茄在缺硼(0 mg/L)、多硼(8 mg/L)处理下果实的酸度增加,甜度、维生素C质量分数、番茄红素、总酚和类黄酮质量分数降低,挥发性物质在多硼处理下增多. 徐炜南[6]发现适宜的硼肥处理能够提高番茄果实的营养品质,主要包括可溶性糖、可溶性固形物和番茄红素等品质指标,另外在喷施含1.90 mg/L硼酸营养液处理的番茄果实中,挥发性物质含量和特征香气含量较高. 挥发性物质是广泛存在于高等植物中的一类低分子量代谢物,不仅赋予果蔬特殊风味,影响果实感官性状,还在其他生物活动中起着信息传导和传递的作用[7]. 番茄红素是成熟水果中的主要色素,在抗氧化、清除自由基方面具有重要的作用[8]. 番茄红素属于类胡萝卜素,类胡萝卜素经过催化裂解可以产生芳香类物质,是作物果实颜色和营养品质的重要因素. 在番茄等可食用的肉质水果中,果实中的芳香物质组成会影响香气和风味[9].
中国是世界上番茄种植面积最大的国家,我国番茄种植面积为146万hm2左右,年产量超过5 500万t[10]. 番茄果实品质受基因型、环境条件、与灌溉和施肥相关的农艺管理以及生长阶段的影响[11]. 尽管风味是消费者接受食物的基本要素,但育种计划主要关注产量,导致许多蔬菜的风味显著下降[12]. 近些年,番茄生产大多致力于提高产量,产品质量参差不齐,个别甚至出现番茄品质降低和风味丧失的现象. 随着人们生活水平日益提高,如何改善和提高蔬菜产品品质,尤其是营养、风味品质,已经成为全社会关注的热点问题. 本研究以重庆地区番茄生产上应用较为广泛的2个品种——“凯丰”和“红丽”为试验材料,采用大田试验研究了不同硼水平(0,1,2,4,8 mg/L硼砂)对番茄的营养、风味品质的影响,为进一步开展蔬菜品质调控积累资料.
Effects of Different Boron Supply Levels on Nutrition and Flavor Quality of Tomato
-
摘要: 微量营养元素硼参与植物的多种生理过程,对蔬菜营养和风味品质具有重要作用. 采用田间试验,以“凯丰”和“红丽”2个番茄品种作为供试材料,探讨了5种不同供硼水平(0,1,2,4,8 mg/L硼砂)下对番茄产量、营养与风味品质的影响. 结果表明,“凯丰”和“红丽”小区产量随硼水平增加而增加,较对照分别提高了27.28%~67.21%和22.23%~86.25%;“凯丰”番茄的单果质量在B1(1 mg/L硼砂)处理下达到最大值,较对照增加了1.16倍,“红丽”番茄单果质量在B4(8 mg/L硼砂)处理下达到最大值,较对照增加了1.20倍;B4 (8 mg/L硼砂)处理下,“凯丰”和“红丽”维生素C质量分数达到最大值,分别是对照的1.73倍和1.83倍;“凯丰”中可溶性固形物比例在B4处理下较对照提高了51.82%,糖酸比是对照的1.67倍. 2个品种番茄共检测出挥发性物质组分46种. “凯丰”和“红丽”的第一限制氨基酸分别为赖氨酸、异亮氨酸. 硼处理下2个品种必需氨基酸与总氨基酸比值均有所增加. 成熟期的“红丽”品种在B2,B4硼处理下番茄红素质量分数有统计学意义. 结合多级模糊综合评价分析,“凯丰”和“红丽”产量和品质在B2 (2 mg/L硼砂)处理下最佳.Abstract: Micronutrient boron participates in various physiological processes of plants. It plays an important role in the nutrition and flavor quality of vegetables. Field experiments were conducted to study the effects of different boron supply levels (0, 1, 2, 4, 8 mg/L borax) on yield, nutrition and flavor quality of tomato. The results showed that the yield of "Kaifeng" and "Hongli" plots increased with the increase of boron level, which increased by 27.28%-67.21% and 22.23%-86.25%, respectively. The single fruit weight of "Kaifeng" tomato reached the maximum value under B1 (1 mg/L borax) treatment, which increased by 1.16 times compared with the control, and that of "Hongli" tomato under B4 (8 mg/L borax) treatment, which increased by 1.20 times compared with the control. Under the treatment of B4 (8 mg/L borax), the vitamin C mass fraction of "Kaifeng" and "Hongli" reached the maximum value, 1.73 times and 1.83 times of the control, respectively. The proportion of soluble solid in "Kaifeng" was increased by 51.82% and the sugar-acid ratio was 1.67 times that of the control under B4 treatment. A total of 46 volatile components were detected in the two varieties of tomato. The first limiting amino acids of "Kaifeng" and "Hongli" are lysine and isoleucine, respectively. The ratio of essential amino acids to total amino acids of the two varieties increased under boron treatment. The tomato red quality score of "Hongli" varieties at maturity stage was statistically significant under B2 and B4 boron treatment. Combined with multi-level fuzzy comprehensive evaluation analysis, the evaluation value of "Kaifeng" and "Hongli" is the best under B2 (2 mg/L borax) treatment.
-
Key words:
- boron /
- tomato /
- nutritional quality /
- lycopene /
- volatile organic compounds .
-
表 1 供硼水平对番茄果实挥发性物质组成及质量分数的影响
编号 挥发性物质成分 “凯丰”/(μg·kg-1) “红丽”/(μg·kg-1) CK B1 B2 B3 B4 CK B1 B2 B3 B4 1 己醛 1 881.49 3 405.42 1 761.10 - 243.18 3 599.47 2 179.76 790.66 70.06 78.83 2 反-2-己烯醛 1 069.68 2 018.15 764.12 618.54 146.01 1 551.22 1 178.35 337.87 27.17 43.75 3 庚醛 54.53 92.36 - - - - - - - - 4 十一醛 - 30.99 - - - - 19.14 - - - 5 苯乙醛 - 39.30 17.35 - 3.36 - - - - - 6 壬醛 - - 65.58 - - 62.96 58.04 58.84 - - 7 癸醛 - - 18.37 - - - - - 1.04 - 8 柠檬醛 - - 30.78 - 8.56 135.00 - - 5.54 - 9 反-2-庚烯醛 - 138.15 105.17 54.60 19.75 - - - - - 10 反-2-辛烯醛 - 164.34 171.85 83.50 40.92 127.83 129.08 - 6.34 - 11 反-2,4-癸二烯醛 21.25 - 34.23 - 10.67 58.32 30.62 - 6.12 6.83 12 2,4-癸二烯醛 - - - - 5.63 25.47 17.82 - - - 13 苯甲醛 - - - - - 114.99 92.34 60.51 - - 14 顺-3,7-二甲基-2,6-辛二烯醛 - - - - - - - - 2.04 - 15 十二醛 - - - - - - - - 0.96 - 16 顺-3-己烯-1-醇 - - - - - - - 716.92 - - 17 正己醇 - - - - - - - 4872.52 - - 18 环庚醇 - - - - - - - 114.50 - - 19 香叶醇 - - - - - - - 29.70 - - 20 2-辛醇 - - - - - - - - 33.23 28.21 21 2-乙基己醇 168.99 272.68 150.34 173.10 16.11 191.57 133.66 - - 5.62 22 反式-2-辛烯-1-醇 - - - - 7.66 - - - - - 23 苄醇 - - - - - - 24.75 - - - 24 顺-3-己烯醇 73.35 78.26 - - - - 61.36 - - 3.58 25 苯乙醇 30.74 98.68 - 30.32 8.51 22.12 - - - - 26 正辛醇 - 50.31 - - - - - 57.59 - - 27 香叶基丙酮 224.56 882.41 234.88 157.30 61.04 428.44 410.75 564.80 35.45 22.27 28 β-紫罗兰酮 18.02 53.45 - - 2.63 21.05 16.15 26.94 1.51 1.39 29 6-甲基-5-庚基-2-酮 669.89 1 636.35 533.25 524.78 44.77 615.48 452.84 1267.90 - - 30 巴伦西亚橘烯 - - 16.20 - - - - 25.53 - - 31 正十三烷 - 31.02 - - - 21.48 - - - - 32 长叶烯 - - - - - 19.23 24.21 - - - 33 环辛烷 - - - - 4.73 - - - - - 34 双戊烯 202.25 233.55 160.75 170.59 16.24 151.11 154.48 198.19 1.82 2.73 35 异硫氰酸苯乙酯 - - - - 10.26 - 22.41 36.34 - - 36 丙烯酸2-乙基己酯 - - - - - - - - - 0.90 37 氯甲酸正壬基酯 - - - - - - 31.40 - - - 38 水杨酸甲酯 - - - - - 145.45 238.54 216.17 16.91 17.17 39 水杨酸乙酯 - - - - - 33.73 - - - - 40 异硫氰酸苯乙酯 - 53.38 - - - - - - - - 41 异硫氰酸烯丙酯 2 559.71 857.15 876.90 267.70 313.64 1637.80 598.42 1273.60 31.61 111.11 42 2,2,3,3,3-五氟丙酸辛酯 - - - 62.45 - - - - - - 43 丁香酚 - - - - - 48.80 39.60 42.53 1.30 3.51 44 愈创木酚 - - - - - 57.04 66.67 107.21 2.77 3.31 45 甘菊蓝 - - - - - - 15.38 - - - 46 萘 - - - - - - - - 0.92 - 表 2 不同供硼水平对番茄果实的特征香气成分及质量分数的影响
特征挥发性物质 风味描述 “凯丰”/(μg·kg-1) “红丽”/(μg·kg-1) CK B1 B2 B3 B4 CK B1 B2 B3 B4 己醛 青草香 1 881.49 3 405.42 1 761.10 - 243.18 3 599.47 2 179.76 790.66 70.06 78.83 反-2-己烯醛 青草香 1 069.68 2 018.15 764.12 618.54 146.01 1 551.22 1 178.35 337.87 27.17 43.75 己醇 青草香 - - - - - - - 4 872.52 - - β-紫罗兰酮 花果香 18.02 53.45 - - 2.63 21.05 16.15 26.94 1.51 1.39 6-甲基-5-庚基-2-酮 花果香 669.89 1 636.35 533.25 524.78 44.77 615.48 452.84 1 267.90 - - 水杨酸甲酯 薄荷味 - - - - - 145.45 238.54 216.17 16.91 17.17 愈创木酚 药味 - - - - - 57.04 66.67 107.21 2.77 3.31 苯乙醇 花香味 30.74 98.68 - 30.32 8.51 22.12 - - - - 反-2-庚烯醛 青草香 - 138.15 105.17 54.60 19.75 - - - - - 苯乙醛 花香味 - 39.30 17.35 - 3.36 - - - - - 顺-3-己烯-1-醇 青草香 - - - - - - - 716.92 - - 总质量分数 3 669.82 7 389.50 3 180.99 1 228.24 468.21 6 011.83 4 132.31 8 336.19 118.42 144.45 表 3 供硼水平对番茄果实氨基酸组成及质量分数的影响
指标 “凯丰”/(g·kg-1) “红丽”/(g·kg-1) CK B1 B2 B3 B4 CK B1 B2 B3 B4 赖氨酸 1.37 1.84 1.27 1.00 1.67 1.27 0.42 0.33 0.74 0.32 亮氨酸 2.94 4.43 2.90 2.08 3.74 2.43 0.74 0.50 1.56 0.57 异亮氨酸 1.74 2.54 1.70 1.22 2.21 1.46 0.46 0.33 0.93 0.34 甲硫氨酸 0.83 2.03 1.04 0.69 1.58 0.86 0.34 0.32 0.48 0.28 苯丙氨酸 2.32 3.16 2.48 1.68 2.74 1.92 0.66 0.52 1.26 0.58 苏氨酸 1.87 2.65 1.87 1.29 2.23 1.51 0.50 0.37 1.06 0.42 缬氨酸 2.18 3.04 2.15 1.56 2.61 1.70 0.60 0.44 1.19 0.50 组氨酸 0.56 0.80 0.54 0.42 0.72 0.54 0.18 0.14 0.33 0.05 精氨酸 1.08 1.46 1.06 0.88 1.22 0.91 0.17 0.13 0.61 0.13 天门冬氨酸 6.36 7.73 5.71 3.74 6.65 6.43 1.81 1.36 3.77 1.46 酪氨酸 1.26 1.80 1.22 0.89 1.67 1.10 0.31 0.21 0.68 0.23 丝氨酸 1.79 2.30 1.61 1.22 2.02 1.52 0.48 0.34 0.98 0.37 谷氨酸 18.24 24.96 16.44 10.13 19.83 19.46 5.16 3.78 10.84 4.31 甘氨酸 2.07 2.83 1.90 1.40 2.61 1.91 0.60 0.41 1.17 0.40 丙氨酸 2.35 3.63 2.37 1.63 3.01 2.02 0.64 0.45 1.23 0.47 半胱氨酸 0.48 0.65 0.39 0.28 0.60 0.53 0.20 0.13 0.30 0.16 脯氨酸 0.95 0.91 0.55 0.66 0.82 0.87 0.28 0.20 0.49 0.11 必需氨基酸 13.26 19.69 13.42 9.53 16.79 11.16 3.71 2.82 7.22 3.01 半必需氨基酸 1.64 2.26 1.60 1.29 1.94 1.45 0.35 0.26 0.94 0.18 总氨基酸 48.39 66.76 45.22 30.76 55.94 46.45 13.54 9.97 27.61 10.70 必需氨基酸/总氨基酸(%) 27.40 29.50 29.68 30.97 30.02 24.02 27.43 28.25 26.15 28.11 表 4 不同供硼水平下番茄果实必需氨基酸的RAA,RC和SRC
品种 处理 指标 苏氨酸 缬氨酸 半胱氨酸+甲硫氨酸 异亮氨酸 亮氨酸 酪氨酸+苯丙氨酸 赖氨酸 SRC “凯丰” CK RAA 0.468 0.436 0.374 0.435 0.420 0.597 0.250 79.975 RC 0.532 0.819 0.879 0.531 0.790 0.755 0.330 B1 RAA 0.662 0.608 0.764 0.635 0.633 0.827 0.335 69.063 RC 0.552 1.100 1.199 0.577 1.097 0.754 0.445 B2 RAA 0.469 0.430 0.408 0.425 0.414 0.617 0.231 75.876 RC 0.491 0.877 0.955 0.485 0.854 0.722 0.320 B3 RAA 0.323 0.313 0.275 0.305 0.298 0.428 0.182 73.354 RC 0.356 0.878 0.907 0.347 0.857 0.500 0.365 B4 RAA 0.558 0.521 0.622 0.553 0.534 0.735 0.304 69.777 RC 0.491 1.062 1.137 0.521 1.027 0.716 0.425 “红丽” CK RAA 0.379 0.340 0.397 0.366 0.347 0.503 0.232 68.562 RC 0.349 0.973 1.085 0.376 0.924 0.545 0.425 B1 RAA 0.124 0.120 0.154 0.115 0.106 0.162 0.076 45.370 RC 0.099 1.213 1.259 0.095 1.119 0.144 0.524 B2 RAA 0.093 0.089 0.128 0.083 0.072 0.122 0.060 38.940 RC 0.067 1.325 1.386 0.062 1.155 0.105 0.573 B3 RAA 0.264 0.237 0.222 0.232 0.223 0.324 0.135 70.026 RC 0.279 0.852 0.948 0.273 0.819 0.396 0.341 B4 RAA 0.104 0.100 0.125 0.085 0.081 0.135 0.058 43.399 RC 0.082 1.215 1.268 0.070 1.158 0.117 0.499 表 4 基于熵权法的子因子的权重
因子 子因子 权重 “凯丰” “红丽” a1 w11 0.06 0.22 0.30 w12 0.26 0.26 w13 0.26 0.22 w14 0.26 0.22 a2 w21 0.20 0.25 0.27 w22 0.20 0.16 w23 0.20 0.15 w24 0.16 0.20 w25 0.19 0.22 a3 w31 0.37 0.25 0.22 w32 0.21 0.13 w33 0.18 0.15 w34 0.19 0.17 w35 0.17 0.33 a4 w41 0.37 0.30 0.25 w42 0.27 0.32 w43 0.43 0.43 表 5 番茄最终多级模糊评价值
处理 “凯丰” “红丽” CK 0.11 0.19 B1 0.24 0.16 B2 0.24 0.28 B3 0.21 0.17 B4 0.20 0.20 -
[1] FAREEHA S, MUHAMMAD N, CHEN C, et al. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture[J]. International Journal of Molecular Sciences, 2018, 19(7): 1856. doi: 10.3390/ijms19071856 [2] 徐卫红. 蔬菜品质调控原理与策略[M]. 北京: 科学出版社, 2020. [3] 朱宇通. 承德中部土壤Zn、Mo、B养分元素分布特征及影响因素研究[D]. 北京: 中国地质大学(北京), 2021. [4] 魏立本, 戴前莉, 黄小辉, 等. 重庆油橄榄园土壤养分状况调查与分析[J]. 中国南方果树, 2020, 49(1): 51-55. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-FRUI202001014.htm [5] 李梅兰, 吴俊华, 李远新, 等. 不同供硼水平对番茄产量及风味品质的影响[J]. 核农学报, 2009, 23(5): 875-878, 890. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB200905032.htm [6] 徐炜南. 硼对番茄生长及果实风味品质的影响[D]. 杨凌: 西北农林科技大学, 2017. [7] 张海朋, 刘翠华, 刘园, 等. 柑橘中挥发性萜类物质代谢研究进展[J]. 园艺学报, 2020, 47(8): 1610-1624. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB202008016.htm [8] SIDHU V, NANDWANI D, WANG L, et al. A Study on Organic Tomatoes: Effect of a Biostimulator on Phytochemical and Antioxidant Activities[J]. Journal of Food Quality, 2017, 2017: 1-8. [9] CHAYUT N, YUAN H, SAAR Y, et al. Comparative Transcriptome Analyses Shed Light on Carotenoid Production and Plastid Development in Melon Fruit[J]. Horticulture Research, 2021, 8(1): 112. doi: 10.1038/s41438-021-00547-6 [10] 尤春, 李长根. 不同砧木嫁接对番茄生长及品质的影响[J]. 中国瓜菜, 2019, 32(12): 60-63. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXG201912015.htm [11] TOSCANO S, TRIVELLINI A, COCETTA G, et al. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce[J]. Frontiers in Plant Science, 2019, 10: 1212. doi: 10.3389/fpls.2019.01212 [12] ZHU G T, GOU J B, KLEE H, et al. Next-Gen Approaches to Flavor-Related Metabolism[J]. Annual Review of Plant Biology, 2019, 70: 187-212. doi: 10.1146/annurev-arplant-050718-100353 [13] 郭世荣. 无土栽培学[M]. 北京: 中国农业出版社, 2003. [14] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008. [15] 崔爽, 白洁, 李国婧, 等. 市售番茄和圣女果果实中番茄红素HPLC检测方法的研究[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(2): 62-66. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201602011.htm [16] 李晓颖, 马茜, 王叶, 等. SPME-GC-MS联用法区分不同类别白菜[J]. 食品科学, 2014, 35(24): 224-227. doi: 10.7506/spkx1002-6630-201424043 [17] 李彦华. 纳米硅酸钾调控不同蔬菜营养和风味品质的机理研究[D]. 重庆: 西南大学, 2019. [18] 冯德玉. 硼对大白菜品质和谷氨酰胺合成酶家族基因表达的影响研究[D]. 重庆: 西南大学, 2021. [19] 姬一兵, 朴建华, 杨晓光. 蛋白质和氨基酸参考摄入量的研究进展[J]. 卫生研究, 2007(1): 120-124. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ200701041.htm [20] 彭真汾, 王威, 叶清华, 等. 高效液相色谱-串联质谱法定量分析橄榄果实氨基酸组分[J]. 食品科学, 2018, 39(24): 231-238. doi: 10.7506/spkx1002-6630-201824035 [21] HE Z H, LI M N, CAI Z L, et al. Optimal Irrigation and Fertilizer Amounts Based on Multi Level Fuzzy Comprehensive Evaluation of Yield, Growth and Fruit Quality on Cherry Tomato[J]. Agricultural Water Management, 2021, 243. [22] KARAMI E. Appropriateness of Farmers' Adoption of Irrigation Methods: The Application of the AHP Model[J]. Agricultural Systems, 2006, 87(1): 101-119. doi: 10.1016/j.agsy.2005.01.001 [23] WANG L B, BALDWIN E A, BAI J H. Recent Advance in Aromatic Volatile Research in Tomato Fruit: the Metabolisms and Regulations[J]. Food and Bioprocess Technology, 2016, 9(2): 203-216. doi: 10.1007/s11947-015-1638-1 [24] 王姝瑶, 郝鑫, 曲悦, 等. 反式-2-己烯醛在植物防御反应中的作用[J]. 植物学报, 2021, 56(2): 232-240. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT202102013.htm [25] LIU Z Y, ALSEEKH S, BROTMAN Y, et al. Identification of a Solanum Pennellii Chromosome 4 Fruit Flavor and Nutritional Quality-Associated Metabolite QTL[J]. Frontiers in Plant Science, 2016, 7: 1671. [26] 彭真汾, 叶清华, 王威, 等. 普通橄榄和清橄榄果实游离氨基酸差异成分与谷氨酰胺代谢[J]. 食品科学, 2019, 40(4): 229-236. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201904034.htm [27] TIEMAN D, ZHU G, RESENDE M J, et al. A Chemical Genetic Roadmap to Improved Tomato Flavor[J]. Science, 2017, 355(6323): 391-394. doi: 10.1126/science.aal1556 [28] AONO Y, ASIKIN Y, WANG N, et al. High-Throughput Chlorophyll and Carotenoid Profiling Reveals Positive Associations with Sugar and Apocarotenoid Volatile Content in Fruits of Tomato Varieties in Modern and Wild Accessions[J]. Metabolites, 2021, 11(6): 398. doi: 10.3390/metabo11060398 [29] 杨俊伟, 梁婷婷, 严露露, 等. 光质对番茄果实品质及挥发性物质的影响[J]. 食品科学, 2019, 40(11): 55-61. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201911009.htm [30] LANDI M, MARGARITOPOULOU T, PAPADAKIS I E, et al. Boron Toxicity in Higher Plants: an Update[J]. Planta, 2019, 250(4): 1011-1032. [31] 徐芳森, 王运华. 我国作物硼营养与硼肥施用的研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1556-1564. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201706016.htm [32] 曾紫君, 曾钰, 闫磊, 等. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202108019.htm [33] 郭丽璇, 耿国涛, 任涛, 等. 施肥管理对油菜种子萌发特性的影响[J]. 中国土壤与肥料, 2020(3): 63-68. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202003010.htm [34] MEDINA-LOZANO I, BERTOLÍN J R, DÍAZ A. Nutritional Value of Commercial and Traditional Lettuce (Lactuca Sativa L.) and Wild Relatives: Vitamin C and Anthocyanin Content[J]. Food Chemistry, 2021, 359: 129864. [35] TANG H, LIU Y G, GONG X M, et al. Effects of Selenium and Silicon on Enhancing Antioxidative Capacity in Ramie (Boehmeria Nivea (L.) Gaud.) under Cadmium Stress[J]. Environmental Scienceand Pollution Research, 2015, 22(13): 9999-10008. [36] 刘盼盼, 肖梓蝶, 黄开为, 等. 土壤施硼对菊花光合色素和生理生化指标的影响[J]. 园艺学报, 2019, 46(6): 1183-1191. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201906015.htm [37] 李学贤, 张雪, 童灵, 等. 游离氨基酸改善作物风味品质综述[J]. 中国农业大学学报, 2022, 27(4): 73-81. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX202204024.htm [38] doi: https://link.springer.com/article/10.1007/s00425-007-0494-2 JUAN J, CAMACHO-CRISTÓBAL, AGUSTÍN GONZÁLEZ-FONTES. Boron Deficiency Decreases Plasmalemma H+-ATPase Expression and Nitrate Uptake, and Promotes Ammonium Assimilation into Asparagine in Tobacco Roots[J]. Planta, 2007, 226(2): 443-451. [39] doi: https://www.sciencedirect.com/science/article/pii/S0304423813001180 JARQUÍN-ENRÍQUEZ L, MERCADO-SILVA E M, MALDONADO J L, et al. Lycopene Content and Color Index of Tomatoes are Affected by the Greenhouse Cover[J]. Scientia Horticulturae, 2013, 155: 43-48. [40] doi: https://link.springer.com/article/10.1007/s12041-013-0275-6 SMITA S, RAJWANSHI R, LENKA S K, et al. Expression Profile of Genes Coding for Carotenoid Biosynthetic Pathway during Ripening and Their Association with Accumulation of Lycopene in Tomato Fruits[J]. Journalof Genetics, 2013, 92(3): 363-368. [41] LAHOZ I, PÉREZ-DE-CASTRO A, VALCÁRCEL M, et al. Effect of Water Deficit on the Agronomical Performance and Quality of Processing Tomato[J]. Scientia Horticulturae, 2016, 200: 55-65. [42] doi: https://link.springer.com/article/10.1007/s12393-015-9113-3 GINÉS BENITO MARTÍNEZ-HERNÁNDEZ, MARÍABOLUDA-AGUILAR, AMAURYTABOADA-RODRÍGUEZ, et al. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content[J]. Food Engineering Reviews, 2016, 8(1): 52-75. [43] 邵旭日, 韩莹琰, 齐长红, 等. 叶面施用不同浓度的硒肥对番茄果实品质的影响[J]. 蔬菜, 2017(8): 25-28. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SCZZ201708013.htm [44] MALLICK S, DAS R C, ZAKIR H M, et al. Effect of Zinc and Boron Application on Lycopene and Nutritional Qualities of Tomato[J]. Journal of Scientific Research and Reports, 2021: 27-36. [45] 王俊文, 武玥, 郁继华, 等. 外源ALA促进番茄糖酸品质及挥发性物质含量的作用研究[J]. 园艺学报, 2021, 48(5): 973-986. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB202105011.htm [46] RAMBLA J L, TIKUNOV Y M, MONFORTE A J, et al. The Expanded Tomato Fruit Volatile Landscape[J]. JournalofExperimental Botany, 2014, 65(16): 4613-4623. [47] doi: https://www.sciencedirect.com/science/article/pii/S0924224405001536 LEWINSOHN E, SITRIT Y, BAR E, et al. Not Just Colors—Carotenoid Degradation as a Link between Pigmentation and Aroma in Tomato and Watermelon Fruit[J]. Trends in Food Science and Technology, 2005, 16(9): 407-415. [48] LEWINSOHN E, SITRIT Y, BAR E, et al. Carotenoid Pigmentation Affects the Volatile Composition of Tomato and Watermelon Fruits, as Revealed by Comparative Genetic Analyses[J]. Journalof Agricultural and Food Chemistry, 2005, 53(8): 3142-3148. [49] KLEE H J. Improving the Flavor of Fresh Fruits: Genomics, Biochemistry, and Biotechnology[J]. New Phytologist, 2010, 187(1): 44-56. [50] BOATRIGHT J, NEGRE F, CHEN X L, et al. Understanding in Vivo Benzenoid Metabolism in Petunia Petal Tissue[J]. Plant Physiology, 2004, 135(4): 1993-2011. [51] WEI Z H, DU T S, LI X N, et al. Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown under Reduced Irrigation Regimes[J]. Frontiers in Plant Science, 2018(9): 328. [52] doi: https://www.sciencedirect.com/science/article/pii/S1002016018600244 ZHOU D X, SU Y, NING Y C, et al. Estimation of the Effects of Maize Straw Return on Soil Carbon and Nutrients Using Response Surface Methodology[J]. Pedosphere, 2018, 28(3): 411-421. [53] JIANG X L, ZHAO Y L, TONG L, et al. Quantitative Analysis of Tomato Yield and Comprehensive Fruit Quality in Response to Deficit Irrigation at Different Growth Stages[J]. Hort Science, 2019, 54(8): 1409-1417. [54] 刘洋, 毛罕平, 徐静云, 等. 机械移栽黄瓜穴盘苗育苗品质评价与试验[J]. 农业机械学报, 2018, 49(S1): 75-82, 163. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2018S1011.htm [55] ZHONG F L, HOU M M, HE B Z, et al. Assessment on the Coupling Effects of Drip Irrigation and Organic Fertilization Based on Entropy Weight Coefficient Model[J]. PeerJ, 2017(5): 3855. [56] HE Z H, LI M N, CAI Z L, et al. Optimal Irrigation and Fertilizer Amounts Based on Multi-Level Fuzzy Comprehensive Evaluation of Yield, Growth and Fruit Quality on Cherry Tomato[J]. Agricultural Water Management, 2021, 243: 106360. [57] YAO X L, DENG H W, ZHANG T, et al. Multistage Fuzzy Comprehensive Evaluation of Landslide Hazards Based on a Cloud Model[J]. PLoS One, 2019, 14(11): 0224312.