-
开放科学(资源服务)标志码(OSID):
-
柑橘是我国最重要的水果,主要种植在南方各省市的山地和丘陵地区. 柑橘产区横跨几个气候带,许多柑橘产区的降雨量季节分配不均匀,因此季节性缺水造成的干旱是制约我国许多地区柑橘产业发展的一个主要因素[1]. 植物有多种抗旱和耐旱机制应对干旱胁迫,以维持正常的生长和发育. 近年的研究发现,一些小分子RNA不仅与植物的生长发育密切相关,而且在植物的抗旱中也发挥着至关重要的作用[2]. 小分子RNA主要有3种类型,siRNAs,miRNAs和piRNAs,其中miRNAs是目前生物体内存在最广泛的,也是研究最多的一类小RNA. 这些小RNA长度大约在20~24个核苷酸,它们通过碱基互补配对与靶基因结合,进而在转录后水平调控基因表达,促使mRNA降解或抑制其翻译,起负调控靶基因的作用[3-4]. miRNA通过调控靶基因参与植物的生长发育和逆境响应[5],许多研究报道指出,有多种miRNA参与植物的干旱胁迫响应. miR196g是最早在水稻中被发现的与干旱相关的miRNA[6],豇豆中发现了有近20个miRNA以不同的方式响应干旱胁迫[7],干旱逆境诱导碧桃叶片及根部中262和368个miRNA差异表达[8],miR168和miR396在拟南芥和烟草中的表达也受干旱胁迫诱导[9]. 在模式植物拟南芥中,miR171在干旱、低温、低氧、低磷、低硫等胁迫下表达量都会发生变化[10]. 豆科植物中miR171也响应干旱胁迫[11]. 在水稻中,过表达osa-miR171f可以通过调控类黄酮生物合成基因的表达来增强水稻的耐旱性[12],它通过调节SCL6-I和SCL6-II的转录水平在抗旱性中发挥作用. 在苹果中,敲除mdm-miR171i和过表达它的靶基因MsSCL26.1均可增强其抗旱性[13]. 进一步研究发现,mdm-miR171通过调节抗氧化基因表达和抗坏血酸代谢来响应干旱胁迫. 以上研究结果表明,miR171家族成员响应植物的干旱胁迫. 目前的研究表明,miR171家族的功能高度保守. 因此可以推测柑橘中的Cre-miR171也可能响应干旱胁迫,但柑橘中Cre-miR171是否响应干旱胁迫以及调控的靶基因的研究还未见报道.
为明确Cre-miR171对柑橘耐旱的作用,本研究通过对Cre-miR171在不同柑橘砧木品种、组织及根系不同部位、发育时期的表达特征进行分析,对Cre-miR171过表达的柑橘砧木枳和模式植物拟南芥进行耐旱性及根系形态评价,探究Cre-miR171对植物响应干旱胁迫的影响. 并在转基因柑橘中对预测的靶基因进行表达分析,为深入研究Cre-miR171调控柑橘耐旱性的分子机理提供参考.
Effect of Cre-miR171 on Drought Stress Response in Citrus
-
摘要: 干旱是影响柑橘生产的一个重要因素. 为探究Cre-miR171在柑橘耐旱中的作用,本研究对其前体上游启动子顺式作用元件进行了分析,研究了其在柑橘组织及生长发育时期的表达特征,验证了Cre-miR171在柑橘中的靶基因,评价了干旱胁迫下Cre-miR171及其靶基因在根不同部位的表达模式,以及过表达Cre-miR171的拟南芥和柑橘的耐旱性. 结果表明,Cre-miR171前体序列启动子区具有与应答及调控逆境胁迫相关的多种响应元件. 在根发育的早期高表达,在侧根发生区的表达量高于根尖. 通过生物信息分析及组织表达相关分析鉴定到了3个靶基因,CclSCL6,CclSCL22和CclSCL26,并利用烟草瞬时表达试验证实了这3个靶基因与Cre-miR171的靶向关系. 在为期15 d的干旱胁迫处理中,Cre-miR171在侧根区和根尖的表达在处理的第10 d出现了明显的相反趋势,在根尖上调表达,在侧根区下调表达,3个靶基因的表达也呈现相应的变化. 过表达Cre-miR171的拟南芥和柑橘对干旱的敏感性显著高于对照,过表达Cre-miR171的柑橘主根的伸长生长和侧根的发生受到了抑制. 以上结果表明,Cre-miR171能影响柑橘根的伸长生长和侧根发生,负调控柑橘的耐旱性.
-
关键词:
- Cre-miR171 /
- 干旱胁迫 /
- 根系生长发育 /
- 柑橘
Abstract: Drought is an important environmental factor affecting the citrus production. In order to explore the role of Cre-miR171 in citrus drought tolerance, this study analyzed the cis-acting elements of its precursor upstream promoter, studied the expression characteristics in different citrus tissues, and growth and development stages, verified the target genes of Cre-miR171, and evaluated the expression patterns of Cre-miR171 and its target genes in different parts of roots under drought stress, as well as the drought tolerance of Cre-miR171 overexpression Arabidopsis and citrus plants. The results showed that the promoter region of Cre-miR171 precursor sequence has a variety of elements related to regulation of stress response. Cre-miR171 was highly expressed in the early stage of root development, and the expression level in the lateral root area was higher than that in the root tip. Through bioinformatics analysis and tissue expression correlation analysis, three target genes, CclSCL6, CclSCL22 and CclSCL26, were identified. The targeting relationship between these three target genes and Cre-miR171 was confirmed by tobacco transient expression experiments. In a 15-day drought stress treatment, the expression of Cre-miR171 in the lateral root zone and root tip showed a significant opposite trend from the 10th day of treatment with up-regulated expression in the root tip and down-regulated expression in the lateral root zone. The expression of the three target genes also showed corresponding changes. The sensitivity of Arabidopsis and citrus plants overexpressing Cre-miR171 to drought was significantly higher than that of the control, and the elongation growth of main roots and the generation of lateral roots in citrus were inhibited. The above results indicated that Cre-miR171 can affect the elongation growth and lateral root formation, and negatively regulate the drought tolerance in citrus.-
Key words:
- Cre-miR171 /
- drought stress /
- root growth and development /
- citrus .
-
表 1 Cre-miR171的核苷酸序列与引物序列
名称 序列(5′~3′) 引物用途 Cre-miR171 UUGAGCCGCGCCAAUAUCACU 核苷酸序列 Pre-miR171-F ATTTAAATGGTCATTTTTAAGGCCTTTAGAGCA miRNA前体序列扩增 Pre-miR171-R GGATCCGCTTGGAATAACCGGATGC 35S CACGCTCGAGTATAAGAGCT 超表达植株的鉴定 RT-miR171 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTG 反转录引物 qmiR171-F GCGCGTTGAGCCGCGCCAAT miR171定量的上游引物 Reverse primer AGTGCAGGGTCCGAGGTATT 茎环法通用下游引物 U6-F GACCAATTCTCGATTTGTGCG U6-R ACAGAGAAGATTAGCATGGCC miRNA的内参基因 表 2 载体构建所用引物
序列名称 引物序列(5′~3′) GUS-miR171 F:GGAGAGGACCTCGAGGGTCATTTTTAAGGCCTTTAGAGCA R:CGACTGCAGGAATTCGCTTGGAATAACCGGATGC GUS-miR156 F:GGAGAGGACCTCGAGGCAAATTAAGCAAGCCGTTT R:CGACTGCAGGAATTCAGAGACACTGGTGCTCACTTG SCclscl6 F:TCGAGAGGGATATTGGCGCGGCTCAAT R:CTAGATTGAGCCGCGCCAATATCCCTC MTSCclscl6 F:TCGAGAGGGATATAAAAAGGGGGCAAT R:CTAGATTGCCCCCTTTTTATATCCCTC SCclscl22 F:TCGAGAGAGATATTGGCGCGGCTCAAT R:CTAGATTGAGCCGCGCCAATATCTCTC MTSCclscl22 F:TCGAGAGAGATATGGGGGAAAAACAAT R:CTAGATTGTTTTTCCCCCATATCTCTC SCclscl26 F:TCGAGGGTGATATTGGTTCGGCTCAAT R:CTAGATTGAGCCGAACCAATATCACCC MTSCclscl26 F:TCGAGGGTGATATAAAAAGGGGGCAAT R:CTAGATTGCCCCCTTTTTATATCACCC 表 3 qRT-PCR引物及序列
基因ID 引物序列(5′~3′) Cclscl6 F:TCTCGCCGATTCTTCAGTTT R:GCATAAGAGAAGCCCACTGC Cclscl22 F:GTAGAAATCAACACGGCTGAAA R:GACTGTTCTTGATTAGGCGAAC Cclscl26 F:CAAAGACCCTGAATCCGAAAT R:ATGGTGCAATGAGTCCATGAA CsActin F:AGAACTATGAACTGCCTGATGGC R:GCTTGGAGCAAGTGCTGTGATT 表 4 干旱胁迫下Cre-miR171与其靶基因在根中表达水平的相关性分析
基因 CclCcl6 CclCcl22 CclCcl26 相关系数(侧根发生区) -0.484 -0.361 -0.531 相关系数(根尖) 0.047 0.04 0.071 表 5 干旱胁迫5~15 d内Cre-miR171与其靶基因在根中表达水平的相关性分析
基因 CclCcl6 CclCcl22 CclCcl26 相关系数(侧根发生区) -0.823** -0.824** -0.828** 相关系数(根尖) -0.523 -0.547 -0.528 注:** 表示差异有统计学意义(p<0.01). -
[1] CHEN R Z, DENG Y W, DING Y L, et al. Rice Functional Genomics: Decades' Efforts and Roads Ahead[J]. Science China Life Sciences, 2022, 65(1): 33-92. doi: 10.1007/s11427-021-2024-0 [2] WEI L Y, ZHANG D F, XIANG F, et al. Differentially Expressed miRNAs Potentially Involved in the Regulation of Defense Mechanism to Drought Stress in Maize Seedlings[J]. International Journal of Plant Sciences, 2009, 170(8): 979-989. doi: 10.1086/605122 [3] BARTEL D. microRNAs Genomics, Biogenesis, Mechanism, and Function[J]. Cell, 2004, 116: 281-297. doi: 10.1016/S0092-8674(04)00045-5 [4] CHEN X M. microRNA Biogenesis and Function in Plants[J]. FEBS Letters, 2005, 579(26): 5923-5931. doi: 10.1016/j.febslet.2005.07.071 [5] JONES-RHOADES M W, BARTEL D P. Computational Identification of Plant microRNAs and Their Targets, Including a Stress-Induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799. doi: 10.1016/j.molcel.2004.05.027 [6] ZHAO B T, LIANG R Q, GE L F, et al. Identification of Drought-Induced microRNAs in Rice[J]. Biochemical and Biophysical Research Communications, 2007, 354(2): 585-590. doi: 10.1016/j.bbrc.2007.01.022 [7] BARRERA-FIGUEROA B E, GAO L, DIOP N N, et al. Identification and Comparative Analysis of Drought-Associated microRNAs in Two Cowpea Genotypes[J]. BMC Plant Biology, 2011, 11: 127. doi: 10.1186/1471-2229-11-127 [8] ELDEM V, ÇELIKKOL AKÇAY U, OZHUNER E, et al. Genome-Wide Identification of miRNAs Responsive to Drought in Peach (Prunus Persica) by High-Throughput Deep Sequencing[J]. PLoS One, 2012, 7(12): e50298. doi: 10.1371/journal.pone.0050298 [9] LIU H H, TIAN X, LI Y J, et al. Microarray-Based Analysis of Stress-Regulated microRNAs in Arabidopsis Thaliana[J]. RNA, 2008, 14(5): 836-843. doi: 10.1261/rna.895308 [10] 文晓鹏, 杨鵾. 植物miRNA在应答非生物胁迫上的调控作用[J]. 山地农业生物学报, 2014, 33(6): 1-13, 37. doi: 10.3969/j.issn.1008-0457.2014.06.001 [11] ZHOU Z S, HUANG S Q, YANG Z M. Bioinformatic Identification and Expression Analysis of New microRNAs from Medicago Truncatula[J]. Biochemical and Biophysical Research Communications, 2008, 374(3): 538-542. doi: 10.1016/j.bbrc.2008.07.083 [12] UM T, CHOI J, PARK T, et al. Rice microRNA171f/SCL6 Module Enhances Drought Tolerance by Regulation of Flavonoid Biosynthesis Genes[J]. Plant Direct, 2022, 6(1): e374. [13] WANG Y T, FENG C, ZHAI Z F, et al. The Apple microR171i-SCARECROW-LIKE PROTEINS26.1 Module Enhances Drought Stress Tolerance by Integrating Ascorbic Acid Metabolism[J]. Plant Physiology, 2020, 184(1): 194-211. doi: 10.1104/pp.20.00476 [14] 靖艳玲. 早实枳FT类似基因的结构分析和功能验证[D]. 武汉: 华中农业大学, 2013. [15] 罗国涛. 柑橘砧木根系发育相关基因的发掘及功能鉴定[D]. 重庆: 西南大学, 2020. [16] 胡洲. 柑橘砧穗互作中microRNA对果实糖酸含量的影响[D]. 重庆: 西南大学, 2022. [17] GU W J, WANG X F, ZHAI C Y, et al. Selection on Synonymous Sites for Increased Accessibility around miRNA Binding Sites in Plants[J]. Molecular Biology and Evolution, 2012, 29(10): 3037-3044. doi: 10.1093/molbev/mss109 [18] ASHA S, NISHA J, SONIYA E V. In Silico Characterisation and Phylogenetic Analysis of Two Evolutionarily Conserved miRNAs (miR166 and miR171) from Black Pepper (Piper nigrum L. )[J]. Plant Molecular Biology Reporter, 2013, 31(3): 707-718. doi: 10.1007/s11105-012-0532-5 [19] ZHANG B H, PAN X P, CANNON C H, et al. Conservation and Divergence of Plant microRNA Genes[J]. The Plant Journal, 2006, 46(2): 243-259. doi: 10.1111/j.1365-313X.2006.02697.x [20] LLAVE C, XIE Z X, KASSCHAU K D, et al. Cleavage of SCARECROW-LIKE mRNA Targets Directed by a Class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056. doi: 10.1126/science.1076311 [21] REINHART B J, WEINSTEIN E G, RHOADES M W, et al. microRNAs in Plants[J]. Genes & Development, 2002, 16(13): 1616-1626. [22] SCHULZE S, SCHÄFER B N, PARIZOTTO E A, et al. LOST MERISTEMS Genes Regulate Cell Differentiation of Central Zone Descendants in Arabidopsis Shoot Meristems[J]. The Plant Journal, 2010, 64(4): 668-678. doi: 10.1111/j.1365-313X.2010.04359.x [23] HUANG W, PENG S Y, XIAN Z Q, et al. Overexpression of a Tomato miR171 Target Gene SlGRAS24 Impacts Multiple Agronomical Traits via Regulating Gibberellin and Auxin Homeostasis[J]. Plant Biotechnology Journal, 2017, 15(4): 472-488. doi: 10.1111/pbi.12646 [24] STERNES P R, MOYLE R L. Deep Sequencing Reveals Divergent Expression Patterns within the Small RNA Transcriptomes of Cultured and Vegetative Tissues of Sugarcane[J]. Plant Molecular Biology Reporter, 2015, 33(4): 931-951. doi: 10.1007/s11105-014-0787-0 [25] WANG C, HAN J, KORIR N K, et al. Characterization of Target mRNAs for Grapevine microRNAs with an Integrated Strategy of Modified RLM-RACE, Newly Developed PPM-RACE and QPCRS[J]. Journal of Plant Physiology, 2013, 170(10): 943-957. doi: 10.1016/j.jplph.2013.02.005 [26] 姚德恒. 迷迭香细胞培养与MeJA对其重要次生代谢物的影响及分子机制[D]. 福州: 福建农林大学, 2021. [27] 李宏宇. 百合体胚发生相关基因MIR171的克隆及其启动子功能分析[D]. 沈阳: 沈阳农业大学, 2018. [28] LI K, LIU Z, XING L B, et al. MiRNAs Associated with Auxin Signaling, Stress Response, and Cellular Activities Mediate Adventitious Root Formation in Apple Rootstocks[J]. Plant Physiology and Biochemistry, 2019, 139: 66-81. doi: 10.1016/j.plaphy.2019.03.006 [29] CHEN Q J, DENG B H, GAO J E, et al. A MiRNA-Encoded Small Peptide, Vvi-miPEP171d1, Regulates Adventitious Root Formation[J]. Plant Physiology, 2020, 183(2): 656-670. doi: 10.1104/pp.20.00197 [30] CHO J, PASZKOWSKI J. Regulation of Rice Root Development by a Retrotransposon Acting as a microRNA Sponge[J]. eLife, 2017, 6: 30038. doi: 10.7554/eLife.30038 [31] LAURESSERGUES D, COUZIGOU J M, CLEMENTE H S, et al. Primary Transcripts of microRNAs Encode Regulatory Peptides[J]. Nature, 2015, 520(7545): 90-93. doi: 10.1038/nature14346 [32] DI LAURENZIO L, WYSOCKA-DILLER J, MALAMY J E, et al. The SCARECROW Gene Regulates an Asymmetric Cell Division that is Essential for Generating the Radial Organization of the Arabidopsis Root[J]. Cell, 1996, 86(3): 423-433. doi: 10.1016/S0092-8674(00)80115-4 [33] HWANG E W, SHIN S J, YU B K, et al. miR171 Family Members are Involved in Drought Response in Solanum tuberosum[J]. Journal of Plant Biology, 2011, 54(1): 43-48. doi: 10.1007/s12374-010-9141-8