-
开放科学(资源服务)标识码(OSID):
Nanozymes and their Biomedical Applications
-
摘要:
纳米酶是2022年度化学领域十大新兴技术之一. 它如同天然酶一样,能够在温和条件下催化酶底物,呈现出与天然酶类似的酶促反应动力学和反应机制,并且可以作为天然酶的替代物应用于疾病的检测及治疗. 在免疫检测方面,纳米酶可以作为信号放大器或传统酶的替代品,提高检测的灵敏度和特异性. 而在肿瘤微环境治疗中,通过特异性响应肿瘤微环境中弱酸性、缺氧和过表达过氧化氢及谷胱甘肽等条件来辅助癌症治疗. 此外,纳米酶还可与多种外部刺激包括磁场、辐射、光、超声和微波等结合,实现多种方式协同检测治疗. 该研究总结了纳米酶的合成方法、分类及催化原理以及纳米酶的生物医学应用,展望了其应用前景.
Abstract:Nanozymes are one of the top ten emerging technologies in the field of chemistry for the year 2022. They catalyze enzyme substrates under mild conditions, exhibiting enzymatic reaction kinetics and mechanisms similar to natural enzymes, and can be used as substitutes for natural enzymes in the detection and treatment of diseases. In recent years, extensive research has focused on the design of various nanozyme systems targeting the challenges of tumor microenvironment therapy. These systems specifically respond to the conditions of tumor microenvironment such as weak acidity, hypoxia, and the overexpression of hydrogen peroxide and glutathione, to assist the cancer treatment. In addition, nanozymes can be combined with a variety of external stimuli, including magnetic field, radiation, light, ultrasound, and microwave, to achieve synergistic treatment through multiple modalities. This article summarizes the synthesis methods, classification, and catalytic principles of nanozymes, as well as their biomedical applications, and looks forward to their prospective applications.
-
Key words:
- nanozyme /
- principles of catalysis /
- biomedical applications .
-
[1] MANEA F, HOUILLON F B, PASQUATO L, et al. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts[J]. Angewandte Chemie (International Ed in English), 2004, 43(45): 6165-6169. doi: 10.1002/anie.200460649 [2] GAO L Z, ZHUANG J, NIE L, et al. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles[J]. Nature Nanotechnology, 2007, 2(9): 577-583. doi: 10.1038/nnano.2007.260 [3] HSU J C, NIEVES L M, BETZER O, et al. Nanoparticle Contrast Agents for X-Ray Imaging Applications[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2020, 12(6): e1642. doi: 10.1002/wnan.1642 [4] HANŽIĆ N, JURKIN T, MAKSIMOVIĆ A, et al. The Synthesis of Gold Nanoparticles by a Citrate-Radiolytical Method[J]. Radiation Physics and Chemistry, 2015, 106: 77-82. doi: 10.1016/j.radphyschem.2014.07.006 [5] LIU X, WORDEN J G, HUO Q, et al. Kinetic Study of Gold Nanoparticle Growth in Solution by Brust-Schiffrin Reaction[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1054-1059. doi: 10.1166/jnn.2006.138 [6] HU X N, SARAN A, HOU S, et al. Au@PtAg Core/Shell Nanorods: Tailoring Enzyme-Like Activities via Alloying[J]. RSC Advances, 2013, 3(17): 6095-6105. doi: 10.1039/c3ra23215h [7] ROGGENBUCK J, SCHÄFER H, TSONCHEVA T, et al. Mesoporous CeO2: Synthesis by Nanocasting, Characterisation and Catalytic Properties[J]. Microporous and Mesoporous Materials, 2007, 101(3): 335-341. doi: 10.1016/j.micromeso.2006.11.029 [8] HUA C C, ZAKARIA S, FARAHIYAN R, et al. Size-Controlled Synthesis and Characterization of Fe3O4 Nanoparticles by Chemical Coprecipitation Method[J]. Sains Malaysiana, 2008, 37(4): 389-394. [9] CHANG M Y, WANG M, WANG M F, et al. A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu2MoS4 for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy[J]. Advanced Materials, 2019, 31(51): 1905271. doi: 10.1002/adma.201905271 [10] LIANG Q, XI J, GAO X J, et al. A Metal-Free Nanozyme-Activated Prodrug Strategy for Targeted Tumor Catalytic Therapy[J]. Nano Today, 2020, 35: 100935. doi: 10.1016/j.nantod.2020.100935 [11] CHEN Q, LI X, MIN X M, et al. Determination of Catechol and Hydroquinone with High Sensitivity Using MOF-Graphene Composites Modified Electrode[J]. Journal of Electroanalytical Chemistry, 2017, 789: 114-122. doi: 10.1016/j.jelechem.2017.02.033 [12] LI J N, LIU W Q, WU X C, et al. Mechanism of PH-Switchable Peroxidase and Catalase-Like Activities of Gold, Silver, Platinum and Palladium[J]. Biomaterials, 2015, 48: 37-44. doi: 10.1016/j.biomaterials.2015.01.012 [13] COMOTTI M, DELLA P C, FALLETTA E, et al. A Erobicoxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent[J]. Adv Synth Catal, 2006, 348(3), 313-316. doi: 10.1002/adsc.200505389 [14] SHEN X M, LIU W Q, GAO X J, et al. Mechanisms of Oxidase and Superoxide Dismutation-Like Activities of Gold, Silver, Platinum and Palladium and Their Alloys: A General Way to the Activation of Molecular Oxygen[J]. Journal of the American Chemical Society, 2015, 137(50): 15882-15891. doi: 10.1021/jacs.5b10346 [15] BEHLER J, DELLEY B, LORENZ S, et al. Dissociation of O2 at Al(111): The Role of Spin Selection Rules[J]. Phys Rev Lett, 2005, 94(3): 537-559. [16] RAGG R, NATALIO F, TAHIR M N, et al. Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity[J]. ACS Nano, 2014, 8(5): 5182-5189. doi: 10.1021/nn501235j [17] ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles[J]. Angew Chem, Int Ed, 2009, 48(13): 2308-2312. doi: 10.1002/anie.200805279 [18] LIU J, MENG L J, FEI Z F, et al. MnO2 Nanosheets as an Artificial Enzyme to Mimic Oxidase for Rapid and Sensitive Detection of Glutathione[J]. Biosensors and Bioelectronics, 2017, 90: 69-74. doi: 10.1016/j.bios.2016.11.046 [19] ZHANG X D, HE S H, CHEN Z H, et al. CoFe2O4 Nanoparticles as Oxidase Mimic-Mediated Chemiluminescence of Aqueous Luminol for Sulfite in White Wines[J]. Journal of Agricultural and Food Chemistry, 2013, 61(4): 840-847. doi: 10.1021/jf3041269 [20] VERNEKAR A A, DAS T, GHOSH S, et al. A Remarkably Efficient MnFe2O4-Based Oxidase Nanozyme[J]. Chemistry-An Asian Journal, 2016, 11(1): 72-76. doi: 10.1002/asia.201500942 [21] LIU J B, HU X N, HOU S, et al. Screening of Inhibitors for Oxidase Mimics of Au@Pt Nanorodsby Catalytic Oxidation of OPD[J]. Chem Commun, 2011, 47(39): 10981-10983. doi: 10.1039/c1cc14346h [22] SUN H J, ZHAO A D, GAO N, et al. Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots[J]. Angewandte Chemie (International Ed in English), 2015, 54(24): 7176-7180. doi: 10.1002/anie.201500626 [23] ZHAO R S, ZHAO X, GAO X F. Molecular-Level Insights into Intrinsic Peroxidase-Like Activity of Nanocarbon Oxides[J]. Chemistry, 2015, 21(3): 960-964. doi: 10.1002/chem.201404647 [24] CLELAND W W. Derivation of Rate Equations for Multisite Ping-Pong Mechanisms with Ping-Pong Reactions at One or More Sites[J]. The Journal of Biological Chemistry, 1973, 248(24): 8353-8355. doi: 10.1016/S0021-9258(19)43139-6 [25] PIRMOHAMED T, DOWDING J M, SINGH S, et al. Nanoceria Exhibit Redox State-Dependent Catalase Mimetic Activity[J]. Chemical Communications, 2010, 46(16): 2736-2738. doi: 10.1039/b922024k [26] WANG N, ZHU L H, WANG D L, et al. Sono-Assisted Preparation of Highly-Efficient Peroxidase-Like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2[J]. Ultrasonics Sonochemistry, 2010, 17(3): 526-533. doi: 10.1016/j.ultsonch.2009.11.001 [27] MU J S, ZHANG L, ZHAO M, et al. Catalase Mimic Property of Co3O4 Nanomaterials with Different Morphology and Its Application as a Calcium Sensor[J]. ACS Applied Materials and Interfaces, 2014, 6(10): 7090-7098. doi: 10.1021/am406033q [28] HUANG Y Y, LIU C Q, PU F, et al. A GO-Se Nanocomposite as an Antioxidant Nanozyme for Cytoprotection[J]. Chemical Communications, 2017, 53(21): 3082-3085. doi: 10.1039/C7CC00045F [29] COLON J, HSIEH N, FERGUSON A, et al. Cerium Oxide Nanoparticles Protect Gastrointestinal Epithelium from Radiation-Induced Damage by Reduction of Reactive Oxygen Species and Upregulation of Superoxide Dismutase 2[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(5): 698-705. doi: 10.1016/j.nano.2010.01.010 [30] KORSCHELT K, SCHWIDETZKY R, PFITZNER F, et al. CeO2-x Nanorods with Intrinsic Urease-Like Activity[J]. Nanoscale, 2018, 10(27): 13074-13082. doi: 10.1039/C8NR03556C [31] CELARDO I, PEDERSEN J Z, TRAVERSA E, et al. Pharmacological Potential of Cerium Oxide Nanoparticles[J]. Nanoscale, 2011, 3(4): 1411-1420. doi: 10.1039/c0nr00875c [32] SONG Y, QU K, XU C, et al. Visual and Quantitative Detection of Copper Ions Using Magnetic Silica Nanoparticles Clicked on Multiwalled Carbon Nanotubes[J]. Chemical Communications, 2010, 46(35): 6572-6574. doi: 10.1039/c0cc01593h [33] CHANG Y, ZHANG Z, HAO J, et al. BSA-Stabilized Au Clusters as Peroxidase Mimetic for Colorimetric Detection of Ag+[J]. Sens Actuators, 2016, 232: 692-697. doi: 10.1016/j.snb.2016.04.039 [34] LIEN C W, UNNIKRISHNAN B, HARROUN S G, et al. Visual Detection of Cyanide Ions by Membrane-Based Nanozyme Assay[J]. Biosens Bioelectron, 2018, 102: 510-517. doi: 10.1016/j.bios.2017.11.063 [35] KARIM M N, ANDERSON S R, SINGH S, et al. Nanostructured Silver Fabric as a Free-Standing Nano Zyme for Colorimetric Detection of Glucose in Urine[J]. Biosensors and Bioelectronics, 2018, 110: 8-15. doi: 10.1016/j.bios.2018.03.025 [36] DENG H H, HONG G L, LIN F L, et al. Colorimetric Detection of Urea, Urease and Urease Inhibitor Based on the Peroxidase-Like Activity of Gold Nanoparticles[J]. Anal Chim Acta, 2016, 915: 74-80. doi: 10.1016/j.aca.2016.02.008 [37] LIU H, ZHU J Y, FU S Y. Effects of Lignin-Metal Complexation on Enzymatic Hydrolysis of Cellulose[J]. J Agric Food Chem, 2010, 12(58): 7233-7238. [38] CHEN W, ZHANG X, LI J, et al. Colorimetric Detection of Nucleic Acids Through Triplex-Hybridization Chain Reaction and DNA Controlled Growth of Platinum Nanoparticles on Graphene Oxide[J]. Anal Chem, 2020, 92(3): 2714-2721. doi: 10.1021/acs.analchem.9b04909 [39] HE W W, LIU Y, YUAN J S, et al. Au@Pt Nanostructures as Oxidase and Peroxidase Mimetics for Use in Immunoassays[J]. Biomaterials, 2011, 32(4): 1139-1147. doi: 10.1016/j.biomaterials.2010.09.040 [40] DEMIN D, FANG K. Nanozyme-Strip for Rapid Local Diagnosis of Ebola[J]. Biosens Bioelectron, 2015, 74: 134-141. doi: 10.1016/j.bios.2015.05.025 [41] BING J, LIANG L. Biomineralization Synthesis of the Cobalt Nanozyme in SP94-Ferritin Nanocages for Prognostic Diagnosis of Hepatocellular Carcinoma[J]. ACS Appl Mater Interfaces, 2019, 10 (11): 9747-9755. [42] LIU T, XIAO B, XIANG F, et al. Ultrasmall Copper-Based Nanoparticles for Reactive Oxygen Species Scavenging and Alleviation of Inflammation Related Diseases[J]. Nat Commun, 2020, 11(1): 2788. doi: 10.1038/s41467-020-16544-7 [43] MA M, LIU Z, GAO N, et al. Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-B in an Alzheimer's Disease Model[J]. J Am Chem Soc, 2020, 142(52): 21702-21711. doi: 10.1021/jacs.0c08395 [44] MA X Y, REN X L, GUO X D, et al. Multifunctional Iron-Based Metal-Organic Framework as Biodegradable Nanozyme for Microwave Enhancing Dynamic Therapy[J]. Biomaterials, 2019, 214: 119223. doi: 10.1016/j.biomaterials.2019.119223 [45] XU J, SHI R, CHEN G, et al. All-In-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy[J]. ACS Nano, 2020, 14(8): 9613-9625. doi: 10.1021/acsnano.0c00082 [46] HUANG Y, WU S, ZHANG L, et al. A Metabolic Multistage Glutathione Depletion Used for Tumor-Specific Chemodynamic Therapy[J]. ACS Nano, 2022, 16(3): 4228-4238. doi: 10.1021/acsnano.1c10231