-
开放科学(资源服务)标识码(OSID):
-
胃癌是死亡率较高的常见癌症之一,在全球癌症死亡原因中排名第四[1-2]. 据2020年统计,全球每年胃癌新增病例109万人,死亡病例77万人[3]. 近年来,尽管胃癌发病率有所下降,但预计到2040年,这种恶性肿瘤的全球发病率将会增加62%[1, 4]. 癌症生物标志物的量化是控制和管理癌症最有效的策略之一[5]. 胃蛋白酶原(Pepsinogen,PG)是胃蛋白酶的无活性前体,根据其生化和免疫特性可以分为PG Ⅰ和PG Ⅱ两个亚群. 血清中PG Ⅰ、Ⅱ的水平以及它们的比值(PG Ⅰ/Ⅱ)被认为是胃癌筛查的有效生物标志物,其准确检测可以有效地对患者的胃癌患病风险进行分级,并决定进一步的检查策略[1, 6]. 传统的蛋白检测方法如高效液相色谱法[7-8]、酶联免疫吸附测定法[9]、气相色谱法[10]等可以提供精确的检测结果,但这些方法操作复杂、费时费力,难以满足大规模筛查的即时检测需求. 因此,针对胃癌的早期筛查和治疗控制建立快速准确的特异性检测方法具有重要意义.
侧流免疫层析(Lateral Flow Immunoassay,LFIA)是一种经典的即时检测技术,因其简单、快速、便宜等优势,已被广泛应用于早期疾病诊断、食品安全检测和环境监测等领域[11-13]. 然而,基于胶体金的传统LFIA的灵敏度较低,定量检测困难,大多用于定性或半定量检测. 为了提高LFIA的灵敏度,各种纳米颗粒被开发作为探针来增强信号,如荧光、上转换、磁性和光热纳米材料等[12]. 尽管这些纳米颗粒的引入使得LFIA可与先进的检测技术相媲美,但它们都只能提供单一维度的信息,难以满足用户在不同场景中的检测需求. 例如,时间分辨荧光LFIA的信号读取仪器价格昂贵,在资源有限的地区普及受限[14];磁性纳米材料能够有效地从复杂的基质中富集目标物从而提高检测灵敏度,但磁信号很容易受到外部环境的干扰,这无疑增加了对实验环境的要求[15-16]. 因此,有必要针对不同的诊断场景开发具有多维信号(多模态)输出的多功能纳米探针.
LFIA典型的输出检测信号包括比色、荧光、磁、光热、拉曼等[11-12, 17-22]. 其中,比色信号具有视觉定性解释的便捷性,是LFIA最优秀的特征之一[12, 23]. 相对于比色信号来说,荧光信号的灵敏度较高,是定量分析最常见的选择[11-12]. 由于磁信号的低背景噪声,它被认为有潜力实现比荧光信号更高的灵敏度,此外,磁性探针能够提供富集和分离功能[15-16],但需要特殊的设备支持[21]. 光热信号具有高灵敏度,可以通过手持式红外相机或普通温度计获得[19, 24-25],并且由于光热效应能够实现精确的热量控制,因此在治疗应用、抗菌领域引起了巨大的研究兴趣[26-27]. 表面增强拉曼散射则因为其激发波长较长,可以有效避免荧光猝灭和光漂白的干扰,可实现超灵敏的检测,被认为是一种极具潜力的技术[28-29]. 多模态LFIA即是利用多功能纳米探针实现各种信号之间的组合,不仅能够保持定性模式下便捷的视觉解释,而且还集成了不同灵敏度水平的各种定量模式以适应不同的应用场景,在即时检测的实用性和灵活性方面有巨大提升,已迅速发展成为一个新兴的研究和开发方向[30-32]. 例如,Huang等[32]将磁性材料和荧光团嵌入纳米结构中制备了一种双功能的纳米探针,结合磁性免疫分离技术和免疫荧光检测技术,无需洗脱和孵育步骤即可灵敏检测食源性病原体,但该研究没有将磁信号作为输出来进一步增加检测的弹性. Hu等[17]开发了一种比色—荧光—磁性纳米球多模态检测平台,实现了靶标分离富集、多信号读出和两种定量检测的多功能集成. Li等[24]利用自组装的多价荧光纳米抗体和金属有机碳纳米材料构建的比色、荧光和光热多模态探针,在黄曲霉毒素B1的检测中表现出优异的性能.
本研究通过金包裹超顺磁性纳米晶簇(SMNC@Au)合成了一种集成比色、磁和拉曼信号的多功能纳米探针,实现了对胃癌标志物的多模态检测. 探针SMNC@Au是首先通过水热法合成的超顺磁性纳米晶簇作为核心,然后通过种子生长法在其上涂覆一层金壳,并在金壳表面结合4-巯基苯甲酸(4-MBA)作为拉曼报告分子而形成的. 该多功能探针可以提供比色、磁性和拉曼3种信号,且可以通过磁力实现分析物的分离和富集,极大简化样本的处理. 最终,基于SMNC@Au的LFIA检测平台能够实现PG Ⅰ和PG Ⅱ的同时检测,并具有一种视觉定性模式和两种不同灵敏度的定量模式(图 1). 为了证明其可行性,本研究使用了不同质量浓度的样本组进行了性能验证. 结果表明,PG Ⅰ和PG Ⅱ的视觉检测限分别为10 ng/mL和1 ng/mL. 在磁性模式下,可以将PG Ⅰ和PG Ⅱ的检测限分别降低到0.5 ng/mL和0.1 ng/mL. 而拉曼模式可以大幅提高PG Ⅰ和PG Ⅱ检测的灵敏度,其检测限分别为0.1 ng/mL和0.05 ng/mL. 磁性模式和拉曼模式可以分别实现从1 ng/mL到500 ng/mL(PG Ⅰ)和0.1 ng/mL到100 ng/mL(PG Ⅱ)的检测范围,并具有高准确性,完全符合临床诊断标准. 此外,PG Ⅰ和PG Ⅱ之间没有内源性交叉反应. 基于金包覆磁性纳米探针的多模态LFIA能够显著提高即时检测的灵活性和普遍适用性,在LFIA领域具有巨大的发展潜力.
Multimodal Lateral Flow Immunoassay Based on Gold-Coated Magnetic Nanoprobes for Gastric Cancer Marker Detection
-
摘要:
多模态侧流免疫层析(Lateral Flow Immunoassay,LFIA)技术能够提供不同灵敏度水平的多种检测模式,极大地提高了即时检测的实用性和灵活性,已迅速发展成为一个极具潜力的研究方向. 研究中合成了一种金包裹的超顺磁性纳米晶簇(SMNC@Au)多功能纳米探针,开发了用于同时检测胃癌标志物胃蛋白酶原(Pepsinogen,PG)Ⅰ和Ⅱ的多模态LFIA传感平台. 首先通过水热法合成超顺磁性纳米晶簇,然后通过种子生长法在其上涂覆一层金壳,最后用4-巯基苯甲酸修饰颗粒表面形成最终的SMNC@Au探针. 该多功能探针可以提供比色、磁性和表面增强拉曼散射3种输出信号,且能通过磁力实现分析物的分离和富集,简化样本的处理. 基于SMNC@Au纳米探针LFIA支持定性比色读数以及磁信号和拉曼信号的两种定量读数,可适应不同的检测场景和要求. 检测结果表明,PG Ⅰ和PG Ⅱ的视觉检测限分别为10 ng/mL和1 ng/mL;磁性模式的检测限分别为0.5 ng/mL和0.1 ng/mL;拉曼模式的检测限分别为0.1 ng/mL和0.05 ng/mL. 两种定量模式的检测范围为1~500 ng/mL(PG Ⅰ)和0.1~100 ng/mL(PG Ⅱ),完全符合临床诊断标准. 该测定表明,所开发的多模态LFIA在不同环境下灵敏检测分析物均有较大潜力.
Abstract:Multimodal lateral flow immunoassay (LFIA) technology provides various detection modes with different sensitivity levels, which significantly enhances the practicality and flexibility of point-of-care testing (POCT), rapidly evolving into a promising research direction. This study synthesized a multifunctional nanoprobe consisting of gold-coated superparamagnetic nanocrystal clusters (SMNC@Au), and developed a multimodal LFIA sensing platform for the simultaneous detection of gastric cancer biomarkers pepsinogen (PG) Ⅰ and Ⅱ. Superparamagnetic nanocrystal clusters (SMNC) were synthesized firstly by the hydrothermal method, followed by coating of a gold shell through the seed growth method, and finally, the surface was modified with 4-MBA to create the SMNC@Au probe. This multifunctional probe can provide three types of output signals: colorimetric, magnetic, and surface-enhanced Raman scattering (SERS), and can achieve separation and enrichment of analytes through magnetic force, simplifying the sample processing. The LFIA based on SMNC@Au probes supports qualitative colorimetric readings as well as two quantitative readings of magnetic and SERS signals, and are adaptable to different detection scenarios and requirements. Detection results indicate that the visual limits of detection for PG Ⅰ and PG Ⅱ are 10 ng/mL and 1 ng/mL, respectively. The magnetic mode detection limits are 0.5 ng/mL for PG Ⅰ and 0.1 ng/mL for PG Ⅱ, while the Raman mode detection limits are 0.1 ng/mL for PG Ⅰ and 0.05 ng/mL for PG Ⅱ. The quantitative detection ranges are 1-500 ng/mL (PG Ⅰ) and 0.1-100 ng/mL (PG Ⅱ), fully meeting the clinical diagnostic standards. This demonstrates that the developed multimodal LFIA has significant potential for sensitive analyte detection in various environments.
-
Key words:
- multimodal probe /
- multifunctional nanomaterials /
- LFIA /
- pepsinogen /
- POCT .
-
表 1 两种定量模式下的重复性和准确度测试
真实质量浓度/(ng·mL-1) 磁模式 拉曼模式 测量值/(ng·mL-1) CV/%(n=5) 准确度/% 测量值/(ng·mL-1) CV/%(n=5) 准确度/% PG Ⅰ 5 6.2±1.15 18.5 80.3 5.12±0.35 6.8 102.4 300 276.3±23.25 8.4 108.6 293.22±10.77 3.7 97.7 10 11.39 ±2.31 18.7 87.8 10.45±0.69 6.6 104.5 250 237.46±17.74 7.5 105.3 247.26±8.38 3.4 98.9 PG Ⅱ 0.5 0.62±0.13 21.0 80.6 0.53±0.07 13.2 106.0 40 36.32±3.76 10.4 110.1 38.24±1.33 3.5 95.6 25 24.32±2.77 11.4 102.8 24.67±0.78 3.2 98.7 5 5.70±1.03 18.1 87.7 5.16±0.33 6.4 103.2 -
[1] THRIFT A P, WENKER T N, EL-SERAG H B. Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention[J]. Nature Reviews Clinical Oncology, 2023, 20(5): 338-349. doi: 10.1038/s41571-023-00747-0 [2] 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ202403001.htm [3] SMYTH E C, NILSSON M, GRABSCH H I, et al. Gastric Cancer[J]. Lancet, 2020, 396(10251): 635-648. doi: 10.1016/S0140-6736(20)31288-5 [4] MORGAN E, ARNOLD M, CAMARGO M C, et al. The Current and Future Incidence and Mortality of Gastric Cancer in 185 Countries: A Population-Based Modelling Study[J]. E-Clinical Medicine, 2022, 47: 101404. [5] FARZIN L, SHAMSIPUR M. Recent Advances in Design of Electrochemical Affinity Biosensors for Low Level Detection of Cancer Protein Biomarkers Using Nanomaterial-Assisted Signal Enhancement Strategies[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 185-210. doi: 10.1016/j.jpba.2017.07.042 [6] MANSOUR-GHANAEI F, JOUKAR F, BAGHAEE M, et al. Only Serum Pepsinogen I and Pepsinogen Ⅰ/Ⅱ Ratio are Specific and Sensitive Biomarkers for Screening of Gastric Cancer[J]. Biomolecular Concepts, 2019, 10(1): 82-90. doi: 10.1515/bmc-2019-0010 [7] CHEN X G. Analysis of Methamphetamine in Human Urine Using Ionic Liquid Dispersive Liquid-Phase Microextraction Combined with HPLC[J]. Chromatographia, 2015, 78(7): 515-520. [8] 付梅, 申春琴, 汪政希, 等. 超高液相色谱-串联质谱法测定贝类组织中环境雄激素睾酮的前处理方法优化[J]. 西南大学学报(自然科学版), 2023, 45(6): 116-124. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2023.06.012 [9] KONISHI N, MATSUMOTO K, HIASA Y, et al. Tissue and Serum Pepsinogen Ⅰ and Ⅱ in Gastric Cancer Identified Using Immunohistochemistry and Rapid ELISA[J]. Journal of Clinical Pathology, 1995, 48(4): 364-367. doi: 10.1136/jcp.48.4.364 [10] GJERDE H, HASVOLD I, PETTERSEN G, et al. Determination of Amphetamine and Methamphetamine in Blood by Derivatization with Perfluorooctanoyl Chloride and Gas Chromatography/Mass Spectrometry[J]. Journal of Analytical Toxicology, 1993, 17(2): 65-68. doi: 10.1093/jat/17.2.65 [11] GUO J C, CHEN S Q, TIAN S L, et al. 5G-Enabled Ultra-Sensitive Fluorescence Sensor for Proactive Prognosis of COVID-19[J]. Biosensors and Bioelectronics, 2021, 181: 113160. doi: 10.1016/j.bios.2021.113160 [12] GUO J C, CHEN S Q, GUO J H, et al. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing[J]. Journal of Materials Science and Technology, 2021, 60: 90-104. doi: 10.1016/j.jmst.2020.06.003 [13] CHENG J, YANG G P, GUO J C, et al. Integrated Electrochemical Lateral Flow Immunoassays (eLFIAs): Recent Advances[J]. The Analyst, 2022, 147(4): 554-570. doi: 10.1039/D1AN01478A [14] SURYOPRABOWO S, LIU L Q, KUANG H, et al. Fluorescence Based Immunochromatographic Sensor for Rapid and Sensitive Detection of Tadalafil and Comparison with a Gold Lateral Flow Immunoassay[J]. Food Chemistry, 2021, 342: 128255. doi: 10.1016/j.foodchem.2020.128255 [15] WANG C W, CHENG X D, LIU L Y, et al. Ultrasensitive and Simultaneous Detection of Two Specific SARS-CoV-2 Antigens in Human Specimens Using Direct/Enrichment Dual-Mode Fluorescence Lateral Flow Immunoassay[J]. ACS Applied Materials and Interfaces, 2021, 13(34): 40342-40353. doi: 10.1021/acsami.1c11461 [16] WU Z Z, HE D Y, XU E B, et al. Rapid Detection of Β-Conglutin with a Novel Lateral Flow Aptasensor Assisted by Immunomagnetic Enrichment and Enzyme Signal Amplification[J]. Food Chemistry, 2018, 269: 375-379. doi: 10.1016/j.foodchem.2018.07.011 [17] HU J, JIANG Y Z, TANG M, et al. Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection[J]. Analytical Chemistry, 2019, 91(1): 1178-1184. doi: 10.1021/acs.analchem.8b05154 [18] YANG S S, DU J Y, WEI M L, et al. Colorimetric-Photothermal-Magnetic Three-in-One Lateral Flow Immunoassay for Two Formats of Biogenic Amines Sensitive and Reliable Quantification[J]. Analytica Chimica Acta, 2023, 1239: 340660. doi: 10.1016/j.aca.2022.340660 [19] YANG H Y, HE Q Y, LIN M X, et al. Multifunctional Au@Pt@Ag NPs with Color-Photothermal-Raman Properties for Multimodal Lateral Flow Immunoassay[J]. Journal of Hazardous Materials, 2022, 435: 129082. doi: 10.1016/j.jhazmat.2022.129082 [20] LIANG J J, WU L, WANG Y Q, et al. SERS/Photothermal-Based Dual-Modal Lateral Flow Immunoassays for Sensitive and Simultaneous Antigen Detection of Respiratory Viral Infections[J]. Sensors and Actuators B: Chemical, 2023, 389: 133875. doi: 10.1016/j.snb.2023.133875 [21] YANG G P, CHENG K X, CHU Z K, et al. A Miniaturized Giant Magnetic Resistance System for Quantitative Detection of Methamphetamine[J]. Analyst, 2021, 146(8): 2718-2725. doi: 10.1039/D0AN02418J [22] CHU Z K, FU M M, GUO J C, et al. Magnetic Resistance Sensory System for the Quantitative Measurement of Morphine[J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(1): 171-176. doi: 10.1109/TBCAS.2021.3060181 [23] QUESADA-GONZÁLEZ D, MERKOÇI A. Nanoparticle-Based Lateral Flow Biosensors[J]. Biosensors and Bioelectronics, 2015, 73: 47-63. doi: 10.1016/j.bios.2015.05.050 [24] LI Z Q, ZHANG W, ZHANG Q, et al. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay[J]. ACS Nano, 2023, 17(19): 19359-19371. doi: 10.1021/acsnano.3c06930 [25] WANG Z X, ZOU R B, YI J H, et al. "Four-in-one" Multifunctional Dandelion-Like Gold@platinum Nanoparticles-Driven Multimodal Lateral Flow Immunoassay[J]. Small, 2024: 2310869. doi: 10.1002/smll.202310869 [26] RAY P C, KHAN S A, SINGH A K, et al. Nanomaterials for Targeted Detection and Photothermal Killing of Bacteria[J]. Chemical Society Reviews, 2012, 41(8): 3193-3209. doi: 10.1039/c2cs15340h [27] WANG Z T, WANG M L, WANG X X, et al. Photothermal-Based Nanomaterials and Photothermal-Sensing: An Overview[J]. Biosensors and Bioelectronics, 2023, 220: 114883. doi: 10.1016/j.bios.2022.114883 [28] FU X L, CHENG Z Y, YU J M, et al. A SERS-Based Lateral Flow Assay Biosensor for Highly Sensitive Detection of HIV-1 DNA[J]. Biosensors and Bioelectronics, 2016, 78: 530-537. doi: 10.1016/j.bios.2015.11.099 [29] LIU H F, DAI E H, XIAO R, et al. Development of a SERS-Based Lateral Flow Immunoassay for Rapid and Ultra-Sensitive Detection of Anti-SARS-CoV-2 IgM/IgG in Clinical Samples[J]. Sensors and Actuators B: Chemical, 2021, 329: 129196. doi: 10.1016/j.snb.2020.129196 [30] LIU X Y, WANG K, CAO B, et al. Multifunctional Nano-Sunflowers with Color-Magnetic-Raman Properties for Multimodal Lateral Flow Immunoassay[J]. Analytical Chemistry, 2021, 93(7): 3626-3634. doi: 10.1021/acs.analchem.0c05354 [31] LIANG M J, CAI X F, GAO Y Y, et al. A Versatile Nanozyme Integrated Colorimetric and Photothermal Lateral Flow Immunoassay for Highly Sensitive and Reliable Aspergillus Flavus Detection[J]. Biosensors and Bioelectronics, 2022, 213: 114435. doi: 10.1016/j.bios.2022.114435 [32] HUANG Z, PENG J, HAN J J, et al. A Novel Method Based on Fluorescent Magnetic Nanobeads for Rapid Detection of Escherichia Coli O157: H7[J]. Food Chemistry, 2019, 276: 333-341. doi: 10.1016/j.foodchem.2018.09.164 [33] LIU J, SUN Z K, DENG Y H, et al. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups[J]. Angewandte Chemie (International Ed in English), 2009, 48(32): 5875-5879. doi: 10.1002/anie.200901566 [34] ZHANG C Y, WANG C W, XIAO R, et al. Sensitive and Specific Detection of Clinical Bacteria via Vancomycin-Modified Fe3O4@Au Nanoparticles and Aptamer-Functionalized SERS Tags[J]. Journal of Materials Chemistry B, 2018, 6(22): 3751-3761. doi: 10.1039/C8TB00504D [35] FANG Y X, GUO S J, ZHU C Z, et al. Self-Assembly of Cationic Polyelectrolyte-Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing[J]. Langmuir, 2010, 26(13): 11277-11282. doi: 10.1021/la100575g [36] ZHANG L, NIU Y, LV Y J, et al. Preliminary Study on Reference Interval of Serum Pepsinogen in Healthy Subjects[J]. Patient Preference and Adherence, 2021, 15: 2725-2730. doi: 10.2147/PPA.S330656 [37] LI K J, LI X Q, FAN Y L, et al. Simultaneous Detection of Gastric Cancer Screening Biomarkers Plasma Pepsinogen Ⅰ/Ⅱ Using Fluorescent Immunochromatographic Strip Coupled with a Miniature Analytical Device[J]. Sensors and Actuators B: Chemical, 2019, 286: 272-281. doi: 10.1016/j.snb.2019.01.149 [38] WU F, MAO M, CEN Y, et al. Copolymerization of Eu(TTA)3Phen Doped Styrene and Methyl Methacrylate Nanoparticles and Use in Quantitative Detection of Pepsinogen[J]. RSC Advances, 2017, 7(20): 12217-12223. doi: 10.1039/C6RA27071A [39] HUANG B, XIAO H L, ZHANG X R, et al. Ultrasensitive Detection of Pepsinogen Ⅰ and Pepsinogen Ⅱ by a Time-Resolved Fluoroimmunoassay and Its Preliminary Clinical Applications[J]. Analytica Chimica Acta, 2006, 571(1): 74-78. doi: 10.1016/j.aca.2006.04.053