-
现代生产企业为提高生产效率普遍采用分批加工模式,即在多个车间或机器上同时加工一定数量的产品或零部件. 比如,在半导体加工厂里集成电路板耐热测试的熔断工序[1]中,测试容器可以同时处理大量的电路板. 关于分批调度的研究已有大量结果[2-3]. 本文关注如下的实际生产情形:某加工厂接到了来自两个客户的多个订单,每个订单对应于不同类型的产品或同一类型产品的不同款式,每个订单中的产品数量不同;两个客户对其订单有不同的期望和要求,其中一个客户期望为其各个订单支付的加工费用均衡化(本文用最小化最大加工费用表示),而另一客户期望其各个订单均尽早交付(本文用最小化完工时间之和表示). 每个订单均可分拆成多个部分并连续地在相邻的批中加工.
文献[4-6]研究了订单可拆分加工的分批调度问题,但均是针对单个代理情形,而本文将在两个竞争代理的背景下研究相关问题.
多代理排序问题最早是由文献[7-8]提出的. 针对两个代理的多个不同的目标函数组合,文献[7]研究了两个代理的目标函数的加权和问题,设计了多项式时间算法并证明了NP难性;而文献[8]研究了限制问题,即在满足不超过一个代理目标函数的门槛值的条件下,使另一个代理的目标函数最小化,同时也研究了几个Pareto优化问题,设计的算法能够在多项式时间内枚举所有Pareto最优点,并为每个Pareto最优点找到一个对应的Pareto最优解. 文献[9]中将多代理模型分类为:竞争代理模型(CO)、非不交代理模型(ND)、Interfering代理模型(IN)、多指标代理模型(MU),并对多代理排序问题的研究结果进行了详细的综述. 文献[10]研究了单机、工件有到达时间并允许中断且具有多个瓶颈指标的情形下的相关多代理排序问题,给出了多项式时间算法或证明了NP难性. 该论文在求解多指标折中排序的方法上有巨大创新. 文献[11-12]研究了在满足其中一个代理的最大费用不超过给定常数的条件下最小化另一个代理的总误工量的排序问题,给出了拟多项式时间算法. 文献[13] 研究了最小化总的加权误工量的多代理折衷指标排序问题,证明了当代理的个数是变量时问题是强NP难的,当代理的个数是固定值时问题是NP难的,并设计了拟多项式时间算法和完全多项式时间近似方案. 更多相关工作可参见文献[14-16].
Two-Agent Parallel-Batch Scheduling with Split Orders
-
摘要: 研究平行批机器环境下两代理调度问题. 其中,来自两个代理的订单竞争使用同一机器资源,所有订单均可拆分并在相邻的批中加工,目标是寻找一个调度方案,使得在保证其中一个代理的所有订单的最大加工费用不超过预算的条件下,最小化另一个代理的所有订单的平均完工时间. 本文证明了此问题是NP难的,并对它的一种特殊情形给出了一个基于动态规划的多项式时间算法.Abstract: In this paper, the scheduling problem has been investigated on a single parallel-batch machine where orders belong to two competing agents and are of equal length but different size. Each order's size can be arbitrarily split into two parts and processed in the consecutive batches. It is not permitted to process the orders from different agents in a common batch. It is shown that it is NP-hard for the problem of minimizing the total completion time of the jobs of one agent, subject to the maximum cost of the jobs of the other agent being upper bounded by a threshold, and also provides a dynamic program algorithm for its one special case.
-
Key words:
- scheduling /
- parallel batch /
- two agents /
- split jobs .
-
[1] LEE C Y, UZSOY R, MARTIN-VEGA L A. Efficient Algorithms for Scheduling Semiconductor Burn-in Operations[J]. Operations Research, 1992, 40(4): 764-775. doi: 10.1287/opre.40.4.764 [2] ALLAHVERDI A, NG C T, CHENG T C E, et al. A Survey of Scheduling Problems with Setup Times or Costs[J]. European Journal of Operational Research, 2008, 187(3): 985-1032. doi: 10.1016/j.ejor.2006.06.060 [3] ALLAHVERDI A. The Third Comprehensive Survey on Scheduling Problems with Setup Times/Costs[J]. European Journal of Operational Research, 2015, 246(2): 345-378. doi: 10.1016/j.ejor.2015.04.004 [4] ZHANG E, LIU M, ZHENG F F, et al. Single Machine Lot Scheduling to Minimize the Total Weighted (Discounted) Completion Time[J]. Information Processing Letters, 2019, 142: 46-51. doi: 10.1016/j.ipl.2018.10.002 [5] HOU Y T, YANG D L, KUO W H. Lot Scheduling on a Single Machine[J]. Information Processing Letters, 2014, 114(12): 718-722. doi: 10.1016/j.ipl.2014.06.016 [6] doi: http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0305054816302520&originContentFamily=serial&_origin=article&_ts=1477217214&md5=1c7141557cfca1f3bc1ab06dae8cbecd YANG D L, HOU Y T, KUO W H. A Note on a Single-Machine Lot Scheduling Problem with Indivisible Orders[J]. Computers & Operations Research, 2017, 79: 34-38. [7] BAKER K R, COLE SMITH J. A Multiple-Criterion Model for Machine Scheduling[J]. Journal of Scheduling, 2003, 6(1): 7-16. doi: 10.1023/A:1022231419049 [8] AGNETIS A, MIRCHANDANI P B, PACCIARELLI D, et al. Scheduling Problems with Two Competing Agents[J]. Operations Research, 2004, 52(2): 229-242. doi: 10.1287/opre.1030.0092 [9] AGNETIS A, BILLAUT J C, GAWIEJNOWICZ S, et al. Multiagent Scheduling[M]. Berlin: Springer, 2014. [10] YUAN J J, NG C T, CHENG T C E. Scheduling with Release Dates and Preemption to Minimize Multiple Max-Form Objective Functions[J]. European Journal of Operational Research, 2020, 280(3): 860-875. doi: 10.1016/j.ejor.2019.07.072 [11] ZHANG X G, WANG Y. Two-Agent Scheduling Problems on a Single-Machine to Minimize the Total Weighted Late Work[J]. Journal of Combinatorial Optimization, 2017, 33(3): 945-955. doi: 10.1007/s10878-016-0017-9 [12] ZHANG Y, YUAN J J. A Note on a Two-Agent Scheduling Problem Related to the Total Weighted Late Work[J]. Journal of Combinatorial Optimization, 2019, 37(3): 989-999. doi: 10.1007/s10878-018-0337-z [13] LI S S, YUAN J J. Single-Machine Scheduling with Multi-Agents to Minimize Total Weighted Late Work[J]. Journal of Scheduling, 2020, 23(4): 497-512. doi: 10.1007/s10951-020-00646-7 [14] 王申重, 张新功. 基于截断学习效应和时间相关的供应链排序问题[J]. 西南大学学报(自然科学版), 2020, 42(1): 44-50. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202001008.htm [15] 王申重. 基于一般时间相关和位置相关的单机排序问题研究[J]. 重庆师范大学学报(自然科学版), 2017, 34(2): 6-10. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201702001.htm [16] 白静, 刘璐, 王吉波. 具有截断学习效应和工件带准备时间的单机排序问题[J]. 运筹与管理, 2014, 23(6): 152-156. doi: 10.3969/j.issn.1007-3221.2014.06.021 [17] GAREY M R, JOHNSON D S. Computers and Intractability: A Guide to the Theory of NP-Completeness[M]. SIAM Review, 1982, 24(1): 90-91.
计量
- 文章访问数: 365
- HTML全文浏览数: 365
- PDF下载数: 45
- 施引文献: 0