-
传染病历来是危害人类健康的大敌,为了遏制疾病传播,许多学者通过建立数学模型来研究其传播过程,其中主要使用的是“仓室”(Compartment)模型. 1927年,文献[1]建立了著名的SIR传染病仓室模型. 其后,经过许多学者的不断研究,建立了适用不同疾病的传染病模型,如SIS[2],SEIR[3],SEIRS[4]等.
遏制疾病的传播,我们通常采用疫苗接种和隔离两种方法. 但是针对新出现的传染病,疫苗的研发和生产往往需要很长时间,因此在疾病传播初期最为有效的方法就是对人群进行隔离[5]. 1995年,文献[6]首次在传染病模型中考虑隔离的影响,建立了SIQR模型;2002年,文献[7]在随机网络传染病模型中加入隔离项,建立并研究了SIQS传染病模型. 上述研究都是基于随机网络研究的,其特点是每个个体是均匀接触的.
然而,文献[8]发现现实中大多数网络的节点分布符合无标度性(异质性),也就是服从幂律分布p(k)=Ck-γ(2 < γ≤3),因此基于异质复杂网络来建立模型就更加贴合实际. 2001年,文献[9]首次在无标度网络上对一类SIS传染病模型进行了研究. 此后,许多学者开始研究复杂网络上的传染病动力学. 另一方面,现实中许多传染病当前的传播状态会受到过去状态的影响,因此,建立时滞传染病模型就更具有现实意义,其中时滞可以用来描述病人的平均感染周期、潜伏周期、免疫周期和隔离周期等[10]. 近期许多学者将网络的无标度性和时滞结合在一起研究传染病模型,取得了丰富成果. 2012年,文献[11]建立了时滞SEIRS网络传染病模型,其中时滞代表平均免疫周期. 2018年,文献[12]建立并研究了时滞SEIR网络传染病模型,其时滞代表疾病的平均潜伏周期. 2019年,文献[13]研究了复杂网络上一类新的时滞SIS模型,其时滞代表病人的平均感染周期. 但是鲜有人在网络上用时滞表示隔离周期来建立数学模型对传染病动力学性态进行研究.
根据以上分析,本文基于无标度网络建立一类新的具有时滞的SIQR传染病模型,其中时滞代表平均隔离周期. 通过泛函微分方程稳定性理论,研究了该模型的动力学行为,得到疾病传播的基本再生数,分析了平衡点的全局稳定性,并通过数值模拟验证了研究结果的正确性.
On a Delayed Epidemic Model with Quarantine on Scale-Free Networks
-
摘要: 为了研究隔离周期对传染病传播的影响, 在无标度网络上建立了一类具有隔离项的时滞传染病模型, 计算了疾病传播的基本再生数; 其次通过建立适当的Lyapunov函数, 证明了该系统无病平衡点和地方病平衡点的全局稳定性; 最后用数值模拟验证了结论的正确性.Abstract: To study the effects of quarantine period on infectious diseases, a novel delayed epidemic model with quarantine on scale-free networks has been proposed. And the basic reproduction number, which is independent of time delay, been presented. By constructing appropriate Lyapunov functions, the global stability of disease-free equilibrium and endemic equilibrium has been investigated. And numerical simulations been performed to verify the correctness of the main results.
-
Key words:
- epidemic model /
- network /
- delay /
- stability .
-
[1] KERMACK W O, MCKENDRICK A G. A Contribution to the Mathematical Theory of Epidemics[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 700-721. doi: 10.1098/rspa.1927.0118 [2] 王振国, 刘桂荣. 具有非线性传染率的SIS网络传染病模型的稳定性和分支分析[J]. 西南师范大学学报(自然科学版), 2017, 42(3): 83-89. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2017.03.014 [3] LI M Y, WANG L C. Global Stability in some Seir Epidemic Models[C]//Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. Springer: New York, 2002. [4] KUNIYA T, NAKATA Y. Permanence and Extinction for a Nonautonomous SEIRS Epidemic Model[J]. Applied Mathematics and Computation, 2012, 218(18): 9321-9331. doi: 10.1016/j.amc.2012.03.011 [5] doi: http://espanol.cdc.gov/enes/hicpac/pdf/isolation/Isolation2007.pdf SIEGEL J D, RHINEHART E, JACKSON M, et al. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings[J]. American Journal of Infection Control, 2007, 35(10 suppl 2): S65-S164. [6] FENG Z L, THIEME H R. Recurrent Outbreaks of Childhood Diseases Revisited: The Impact of Isolation[J]. Mathematical Biosciences, 1995, 128(1-2): 93-130. doi: 10.1016/0025-5564(94)00069-C [7] HETHCOTE H, MA Z E, LIAO S B. Effects of Quarantine in Six Endemic Models for Infectious Diseases[J]. Mathematical Biosciences, 2002, 180(1-2): 141-160. doi: 10.1016/S0025-5564(02)00111-6 [8] BARABÁSI A L, ALBERT R. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509 [9] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic Spreading in Scale-Free Networks[J]. Physical Review Letters, 2001, 86(14): 3200-3203. doi: 10.1103/PhysRevLett.86.3200 [10] MA Z E, ZHOU Y C, WU J H. Modeling and Dynamics of Infectious Diseases[M]. Singarpore: World Scientific, 2009. [11] LIU X, XU D J. Analysis of SEτ IRω S Epidemic Disease Models with Vertical Transmission in Complex Networks[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(1): 63-74. doi: 10.1007/s10255-012-0094-1 [12] KANG H Y, SUN M F, YU Y J, et al. Spreading Dynamics of an SEIR Model with Delay on Scale-Free Networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 489-496. doi: 10.1109/TNSE.2018.2860988 [13] ZHU L H, GUAN G, LI Y M. Nonlinear Dynamical Analysis and Control Strategies of a Network-Based SIS Epidemic Model with Time Delay[J]. Applied Mathematical Modelling, 2019, 70: 512-531. doi: 10.1016/j.apm.2019.01.037 [14] LI C H, TSAI C C, YANG S Y. Analysis of Epidemic Spreading of an SIRS Model in Complex Heterogeneous Networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 1042-1054. doi: 10.1016/j.cnsns.2013.08.033 [15] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic Dynamics in Finite Size Scale-Free Networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(3): 035108. doi: 10.1103/PhysRevE.65.035108 [16] OLINKY R, STONE L. Unexpected Epidemic Thresholds in Heterogeneous Networks: The Role of Disease Transmission[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(3): 030902. doi: 10.1103/PhysRevE.70.030902 [17] doi: http://www.onacademic.com/detail/journal_1000034026337110_d02e.html ZHANG H F, FU X C. Spreading of Epidemics on Scale-Free Networks with Nonlinear Infectivity[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(9): 3273-3278. [18] HALE J K, LUNEL S M V. Introduction to Functional Differential Equations[M]. Berlin: Springer, 1993. [19] VAN DEN DRIESSCHE P. Reproduction Numbers of Infectious Disease Models[J]. Infectious Disease Modelling, 2017, 2(3): 288-303. doi: 10.1016/j.idm.2017.06.002 [20] HALE J K. Retarded Functional Differential Equations: Basic Theory[M]//Theory of Functional Differential Equations. Berlin: Springer, 1977: 36-56. [21] doi: http://sites.ualberta.ca/~myli/research/ps_files/multigp_sir.pdf GUO H B, LI M Y, ZS S. Global Stability of the Endemic Equilibrium of Multigroup SIR Epidemic Models[J]. Canadian Applied Mathematics Quarterly, 2006, 14(3): 259-284. [22] 叶志勇, 刘原, 赵彦勇. 一类SIQR传染病模型在无尺度网络上的传播行为分析[J]. 计算机工程与科学, 2014, 36(8): 1524-1527. doi: 10.3969/j.issn.1007-130X.2014.08.017