留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类带有p-Laplacian算子的分数阶微分方程边值问题的多重正解

上一篇

下一篇

胡芳芳, 刘元彬, 张永. 一类带有p-Laplacian算子的分数阶微分方程边值问题的多重正解[J]. 西南师范大学学报(自然科学版), 2022, 47(11): 31-40. doi: 10.13718/j.cnki.xsxb.2022.11.005
引用本文: 胡芳芳, 刘元彬, 张永. 一类带有p-Laplacian算子的分数阶微分方程边值问题的多重正解[J]. 西南师范大学学报(自然科学版), 2022, 47(11): 31-40. doi: 10.13718/j.cnki.xsxb.2022.11.005
HU Fangfang, LIU Yaunbin, ZHANG Yong. Multiple Positive Solutions of Boundary Value Problems for a Class of Fractional Differential Equations with p-Laplacian Operators[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(11): 31-40. doi: 10.13718/j.cnki.xsxb.2022.11.005
Citation: HU Fangfang, LIU Yaunbin, ZHANG Yong. Multiple Positive Solutions of Boundary Value Problems for a Class of Fractional Differential Equations with p-Laplacian Operators[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(11): 31-40. doi: 10.13718/j.cnki.xsxb.2022.11.005

一类带有p-Laplacian算子的分数阶微分方程边值问题的多重正解

  • 基金项目: 伊犁师范大学校级项目(2021YSYB075)
详细信息
    作者简介:

    胡芳芳,讲师,主要从事微分方程理论与应用的研究 .

    通讯作者: 张永,讲师
  • 中图分类号: O175.14

Multiple Positive Solutions of Boundary Value Problems for a Class of Fractional Differential Equations with p-Laplacian Operators

  • 摘要: 研究了一类带有p-Laplacian算子的Riemann-Liouville分数阶微分方程边值问题正解的存在性. 在适当的边值条件下,首先运用积分变换和拉普拉斯变换将原来的边值问题转化为与其等价的积分方程,其次利用锥压缩、锥拉伸不动点定理和Leggett-Williams不动点定理分别证明边值问题一个及多个正解的存在性,最后通过算例验证主要结论的有效性,推广和改进了相关结论.
  • 加载中
  • [1] BOBISUD L E. Steady-State Turbulent Flow with Reaction[J]. Rocky Mountain Journal of Mathematics, 1991, 21(3): 993-1007.
    [2] TUDORACHE A, LUCA R. Positive Solutions for a System of Riemann-Liouville Fractional Boundary Value Problems with p-Laplacian Operators[J]. Advances in Difference Equations, 2020, 2020(292): 1-30.
    [3] HE Y, BI B. Existence and Iteration of Positive Solution for Fractional Integral Boundary Value Problems with p-Laplacian Operator[J]. Advances in Difference Equations, 2019, 2019(415): 1-15.
    [4] 李继梅, 李辉来. 一类具有p-Laplace算子的非线性分数阶微分方程解的存在性与多解性[J]. 吉林大学学报(理学版), 2018, 56(6): 1285-1290. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201806002.htm
    [5] RAO S N, SINGH M, MEETEI M Z. Multiplicity of Positive Solutions for Hadamard Fractional Differential Equations with p-Laplacian Operator[J]. Boundary Value Problems, 2020, 2020(43): 1-25.
    [6] 廖家锋, 李红英, 段誉. 一类奇异p-Laplacian方程正解的唯一性[J]. 西南大学学报(自然科学版), 2016, 38(6): 45-49. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201606009.htm
    [7] 康淑瑰, 岳亚卿, 郭建敏. 分数阶微分方程奇异系统边值问题正解的存在性[J]. 西南大学学报(自然科学版), 2019, 41(4): 104-108. doi: 10.13718/j.cnki.xdzk.2019.04.015
    [8] 郭彩霞, 郭建敏, 田海燕, 等. 一类分数阶奇异q-差分方程边值问题解的存在性和唯一性[J]. 西南师范大学学报(自然科学版), 2018, 43(12): 6-10. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2018.12.002
    [9] 段佳艳, 王文霞, 郭晓珍. 一类带p-Laplacian算子的分数阶微分方程边值问题正解的存在性[J]. 应用数学进展, 2020, 9(12): 2301-2307. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202023023.htm
    [10] 纪宏伟. 一类非线性三阶微分方程边值问题多个解的存在性[J]. 西南师范大学学报(自然科学版), 2020, 45(5): 51-57. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2020.05.009
    [11] 蔡蕙泽, 韩晓玲. 一类非线性分数阶微分方程边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2019, 56(4): 614-620. doi: 10.3969/j.issn.0490-6756.2019.04.006
    [12] 刘晓娟, 魏永芳, 白占兵. 带有积分边值条件的分数阶微分方程正解的存在性[J]. 山东科技大学学报(自然科学版), 2019, 38(2): 100-105. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201902012.htm
    [13] RAHIMKHANI P, ORDOKHANI Y. Approximate Solution of Nonlinear Fractional Integro-Differential Equations Using Fractional Alternative Legendre Functions[J]. Journal of Computational and Applied Mathematics, 2020, 365: 112-365.
    [14] BAI C. Existence and Uniqueness of Solutions for Fractional Boundary Value Problems with p-Laplacian Operator[J]. Advances in Difference Equations, 2018, 2018(1): 1-12. doi: 10.1186/s13662-017-1452-3
    [15] LU H L, HAN Z L, SUN S R, et al. Existence on Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equations with p-Laplacian[J]. Advances in Difference Equations, 2013, 2013: 1-12. doi: 10.1186/1687-1847-2013-1
    [16] TIAN Y S, BAI Z B, SUN S J. Positive Solutions for a Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator[J]. Advances in Difference Equations, 2019, 2019(349): 1-14.
    [17] KILBAS A A, TRUJILLO J J. Differential Equations of Fractional Order: Methods, Results and Problems. Ⅱ[J]. Applicable Analysis, 2002, 81(2): 435-493. doi: 10.1080/0003681021000022032
    [18] LIU Y, XIE D P, YANG D D, et al. Two Generalized Lyapunov-Type Inequalities for a Fractional p-Laplacian Equation with Fractional Boundary Conditions[J]. Journal of Inequalities and Applications, 2017, 2017(98): 1-16.
    [19] LI Y H. Multiple Positive Solutions for Nonlinear Mixed Fractional Differential Equation with p-Laplacian Operator[J]. Advances in Difference Equations, 2019, 2019(112): 1-12.
    [20] LEGGETT R W, WILLIAMS L R. Multiple Positive Fixed Points of Nonlinear Operators on Ordered Banach Spaces[J]. Indiana University Mathematical Journal, 1979, 28(4): 673-688. doi: 10.1512/iumj.1979.28.28046
  • 加载中
计量
  • 文章访问数:  470
  • HTML全文浏览数:  470
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-24
  • 刊出日期:  2022-11-20

一类带有p-Laplacian算子的分数阶微分方程边值问题的多重正解

    通讯作者: 张永,讲师
    作者简介: 胡芳芳,讲师,主要从事微分方程理论与应用的研究
  • 1. 伊犁师范大学 数学与统计学院,新疆 伊宁 835000
  • 2. 伊犁师范大学 应用数学研究所,新疆 伊宁 835000
  • 3. 新疆工程学院 数理学院,新疆 昌吉 830091
基金项目:  伊犁师范大学校级项目(2021YSYB075)

摘要: 研究了一类带有p-Laplacian算子的Riemann-Liouville分数阶微分方程边值问题正解的存在性. 在适当的边值条件下,首先运用积分变换和拉普拉斯变换将原来的边值问题转化为与其等价的积分方程,其次利用锥压缩、锥拉伸不动点定理和Leggett-Williams不动点定理分别证明边值问题一个及多个正解的存在性,最后通过算例验证主要结论的有效性,推广和改进了相关结论.

English Abstract

  • p-Laplacian算子的微分方程主要来源于非牛顿流体理论和多孔介质气体的湍流理论. 学者从多孔介质方程[1]中抽象出p-Laplacian方程,随后此类方程被广泛地应用到诸多领域,且p-Laplacian算子在许多物理工程的实际应用中可以更加具体地解释一些复杂的物理现象,所以,越来越多的学者研究带有p-Laplacian算子的分数阶微分方程解的存在性[2-6].

    随着科学技术的进步和学者的深入研究,分数阶微分方程模型引起了数学学者们的广泛关注,在过去的几十年里,分数阶微分方程的成果丰硕[7-10],如:不同边值条件下的正解性,其主要研究方法包括锥上不动点定理、上下解方法、单调迭代方法等[11-13].

    文献[14]利用Banach压缩映射原理和Guo-Krasnosel’ski不动点定理得到了以下具有p-Laplacian算子的边值问题

    正解的存在唯一性定理,其中0<β≤1,2<α≤2+βD0+αcD0+β分别为α阶的Riemann-Liouville型分数阶导数和β阶的Caputo分数阶微分,p>1,f$[a, b] \times \mathbb{R} \longrightarrow \mathbb{R} $为连续函数.

    文献[15]利用Guo-Krasnosel’ski不动点定理和上下解方法得到了具有p-laplacian算子的Caputo分数阶微分方程边值问题

    的正解存在性的一些新结果. 其中

    D0+βD0+α是标准的Riemann-Liouville型分数阶导数.

    文献[16]运用单调迭代法得到了分数阶微分方程边值问题

    的正解的存在性结果. 其中

    DαDβ是标准的Riemann-Liouville型分数阶导数.

    基于上述研究,本文利用p-Laplacian算子考虑分数阶微分方程边值问题

    正解的存在性.其中1<β≤2,2<α≤3,0RDtβ0RDtα是标准的Riemann-Liouville型分数阶导数.φp(s)=$|s|^{p-2} s, p>1, \varphi_p^{-1}=\varphi_q, \frac{1}{p}+\frac{1}{q}=1, f:[0, 1] \times[0, +\infty) \longrightarrow[0, +\infty) $是连续函数. 通过运用Leggett-Williams不动点定理得到方程(4)至少存在3个正解的结果. 与文献[16]所研究的问题相比,本文所研究的边值问题更具一般性.

  • 定义1[17]     连续函数y$[0, +\infty) \longrightarrow \mathbb{R} $α>0阶Riemann-Liouville积分定义为

    其中等式右端在[0,+∞)内有定义.

    定义2[18]     连续函数y$[0, +\infty) \longrightarrow \mathbb{R} $α>0阶Riemann-Liouville微分定义为

    其中n是不小于α的最小整数.

    引理1[18]     设u(t)∈C[0, 1]∩L1[0, 1],且α>0,则

    其中n是不小于α的最小整数.

    引理2[18]     设u(t)∈L1(0,1),且αβ>0,则

    其中n是不小于α的最小整数.

    引理3[18]    设ρ>0,μ>0,则

    引理4    设y∈[0, 1],1<β≤2,2<α≤3,则分数阶微分方程边值问题

    有唯一解

    其中

        利用引理1,对方程0RDtαu(t)+y(t)=0两边求α阶积分,可得

    由边值条件

    可得

    因为αβ,对(8)式两边进行β阶微分,可得

    由边值条件(0RDtβu(t))t=1=0,可得

    其中

    引理5    设g∈[0, 1],1<β≤2,2<α≤3,则分数阶微分方程边值问题

    有唯一解

    其中

        用引理1,对方程${ }_0^R D_{\mathrm{t}}^\beta\left(\varphi_p\left({ }_0^R D_{\mathrm{t}}^\alpha u(t)\right)\right)=g(t) $两边求β阶积分,可得

    由边值条件

    可得

    由引理4可知

    引理6    函数G(ts),H(ts)满足如下性质:

    (i) 对任意的ts∈[0, 1],G(ts)≥0,H(ts)≥0;

    (ii) 对任意的ts∈[0, 1],$\frac{{{{(1 - s)}^{\alpha - \beta - 1}}{t^{\alpha - 1}}}}{{\mathit{\Gamma }(\alpha )}} - \frac{{{{(1 - s)}^{\alpha - 1}}{t^{a - 1}}}}{{\mathit{\Gamma }(\alpha )}} \le G(t, s) \le \frac{{{{(1 - s)}^{a - 1}}{t^{\alpha - 1}}}}{{\mathit{\Gamma }(\alpha )}} $

    (iii) 对任意的ts∈[0, 1],$\frac{{{{(1 - s)}^{\beta - 1}}{t^{\beta - 1}}}}{{\mathit{\Gamma }(\beta )}} - \frac{{{{(t - s)}^{\beta - 1}}{t^{\beta - 1}}}}{{\mathit{\Gamma }(\beta )}} \le H(t, s) \le \frac{{{{(1 - s)}^{\beta - 1}}{t^{\beta - 1}}}}{{\mathit{\Gamma }(\beta )}} $.

        (i) 由函数G(ts),H(ts)的表达式可知(i)显然成立.

    (ii) 若0≤st≤1,则一定有

    因此

    当0≤st≤1时,有

    当0≤ts≤1时,有

    (iii) 若0≤st≤1,则一定有

    因此

    当0≤st≤1时,有

    当0≤ts≤1时,有

    引理7[19]    设E是一个Banach空间,PE中的一个锥,Ω1Ω2E中的两个有界开集,并且Ω1Ω2,假设A$ P \cap ({{\mathit{\bar \Omega }}_2}\backslash {\mathit{\Omega }_1}) \longrightarrow P$是全连续算子,若

    (i) $ \left\| {Ax} \right\| \le \left\| x \right\|\left( {x \in P \cap \partial {\mathit{\Omega }_1}} \right), \left\| {Ax} \right\| \ge \left\| x \right\|\left( {x \in P \cap \partial {\mathit{\Omega }_2}} \right)$

    (ii) $ \left\| {Ax} \right\| \ge \left\| x \right\|\left( {x \in P \cap \partial {\mathit{\Omega }_1}} \right), \left\| {Ax} \right\| \le \left\| x \right\|\left( {x \in P \cap \partial {\mathit{\Omega }_2}} \right)$.

    中有一个成立,那么A$ P \cap \left( {{{\mathit{\bar \Omega }}_2}\backslash {\mathit{\Omega }_1}} \right)$中有一个不动点.

    引理8[20]    设P为实Banach空间E中的一个锥,

    θP上的一个非负连续凹泛函,使得当$x \in {\bar P}_c \text { 时, } \theta(x) \leqslant\|x\|$,并且

    假设A$\bar{P}_c \longrightarrow \bar{P}_c $是全连续的,且存在常数满足0<abdc,使得

    (i) $ \{x \in P(\theta, b, d): \theta(x)>b\} \neq \varnothing$,且对xP(θbd)有θ(Ax)>b

    (ii) 当‖x‖≤a时,‖Ax‖≤a

    (iii) 当xP(θbc)且‖Ax‖>d时,θ(Ax)>b.

    那么A至少有3个不动点x1x2x3,满足

  • E=C[0, 1],在E中定义范数

    E为Banach空间. 定义锥PE

    定义锥P上的非负连续泛函θ

    对于给定的连续函数f∈[0, 1]×[0,+∞),对任意的uP,定义积分算子$T: P \longrightarrow E $

    定理1    $T: P \longrightarrow P $是全连续算子.

        设ΩP的任意有界集,即存在一个常数γ>0,使得∀uΩ,都满足‖u‖≤γ. 由于f(tu(t)) 是连续的,则对于t∈[0, 1],存在m>0,使得

    所有T(Ω)是一致有界的.

    由于G(ts)在[0, 1]×[0, 1]上是一致连续的,因此G(ts)是一致连续的.对任意的ε>0,存在δ>0,使得当t1t2∈[0, 1],t1t2,|t2t1|<δ时,有

    于是

    这就表明T(Ω)是等度连续的. 因此,由Arzela-Ascoli定理可证明算子$T: P \longrightarrow P $是全连续的.为方便起见,我们引入符号

    定理2    假设f(tu(t))为C[0, 1]×[0,+∞)上的连续函数,其中

    若存在两个正常数r2r1>0,使得

    (i) 当(tu(t))∈[0, 1]×[0,r1]时,f(tu(t))≥φp(Nr1);

    (ii) 当(tu(t))∈[0, 1]×[0,r2]时,f(tu(t))≤φp(Mr2).

    则方程(4)至少有一个正解u,使得r1<‖u‖<r2.

        令

    uΩ1时,有

    由(i)和引理6得

    从而

    uΩ2时,有

    可从(ii)和引理6得

    从而‖Tu‖≤‖u‖,u∂Ω2.

    总之,通过引理7可知,方程(4)至少有一个正解u,且满足r1<‖u‖<r2.

    定理3    假设f(tu(t))为C[0, 1]×[0,+∞)上的连续函数,若存在满足0<abc的正常数,使得

    (i) 当(tu(t))∈[0, 1]×[0,a]时,f(tu(t))≤φp(Ma);

    (ii) 当(tu(t))∈[0, 1]×[bc]时,f(tu(t))≥φp(Nb);

    (iii) 当(tu(t))∈[0, 1]×[0,c]时,f(tu(t))≤φp(Mc).

    则方程(4)至少有3个正解u1u2u3,且满足

        如果$u \in \bar{P}_c $,则$ T: \bar{P}_c \longrightarrow \bar{P}_c$是一个全连续算子. 假设$u \in \bar{P}_c $,则‖u‖≤c,由引理6和(iii)可得

    则对任意的$u \in \bar{P}_c $,有‖Tu‖≤c,则$ T: \bar{P}_c \longrightarrow \bar{P}_c$.同样地,如果$u \in \bar{P}_a $,则由(i)得到‖Tu‖≤a,因此满足引理8中的条件(ii).

    下面证明引理8的条件(i)也是满足的.很明显,

    uP(θbd),对任意的0≤t≤1有bu(t)≤d,通过(ii)可得

    即对任意的uP(θb d),θ(Tu)>b.因此满足引理8中的条件(i).

    最后,我们证明引理8的条件(iii)也是满足的. 对任意的uP(θbc),都有θ(Tu)>b. 因此,引理8的条件(iii)也成立.

    综上所述,引理8的所有条件都满足. 根据引理8,可以得出方程(4)存在3个正解u1u2u3,满足

  • 例1    考虑边值问题

    其中

    经过计算得

    选取$ a=\frac{1}{2}, b=2, c=3$,有

    应用定理3,例1至少有3个正解u1u2u3,且满足

参考文献 (20)

目录

/

返回文章
返回