-
分数阶微积分是整数阶微积分的自然推广.分数阶扩散方程的研究与应用已被广泛重视.在控制工程中,经典的反应扩散方程的边界控制已有很多研究[1-3],但分数阶反应扩散方程[4]的控制研究还很少[5].受文献[5-6]的启发,本文考虑如下带空间记忆的分数阶热方程的边界控制问题
其中:α∈(0,1],u(·,·)表示系统的状态,U(·)是边界控制,g(·)是一个正的连续函数,0CDtαu(x,t)和0Itβu(x,t)分别表示Caputo时间分数阶导数和Riemann-Liouville时间分数阶积分[7],即
本文采用反推控制(backstepping)方法来研究系统(1)的快速能稳性.首先给出一个L2 Mittag-Leffler稳定[8]的目标系统,然后利用一类Fredholm和Volterra积分变换将原系统转化为目标系统,但其核方程难于求解.为了简化核方程的求解,本文通过一个恰当的过渡系统,先将原系统变到过渡系统,再从过渡系统变到目标系统.最后用Lypunov方法证明闭环系统是任意L2 Mittag-Leffler稳定的.
Rapid Stabilization of a Fractional-Order Heat Equation with Spatial Memory
-
摘要: 研究了一类带空间记忆的分数阶热方程的边界控制问题.通过建立恰当的过渡系统避开了直接做backstepping变换时核方程求解的难点;同时证明了两次backstepping变换的可逆性,并由此得到了闭环系统的任意快速L2 Mittag-Leffler稳定性.
-
关键词:
- 分数阶热方程 /
- Caputo分数阶 /
- 边界控制 /
- Mittag-Leffler稳定性
Abstract: This paper considers the boundary control problem for a fractional-order heat equation with spatial memory. Via constructing an appropriate transition system, we obtain the existence of kernels and avoid the difficulty in solving the kernels in direct backstepping transformation. Meanwhile, we prove the invertibility of two-step backstepping transformation and obtain the rapid L2 Mittag-Leffler stability of closed-loop systems. -
[1] 任采璇.时间分数阶扩散方程反问题的稳定性及反演[D].上海: 复旦大学, 2013. [2] KRSTIC M, SMYSHLYAEV A. Boundary Control of PDEs: A Course on Backstepping Design[M]. Philadelphia: SIAM, 2008: 1-200. [3] 甄志远, 谢成康, 何翠华. N个耦合反应扩散方程的边界控制[J].西南大学学报(自然科学版), 2017, 39(3):75-80. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201703012&flag=1 [4] 马亮亮.一种Caputo分数阶反应-扩散方程初边值问题的隐式差分格式[J].贵州师范大学学报(自然科学版), 2013, 31(2):58-61. doi: http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201302013 [5] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f70cccd8ca377f267f4f7d35890de7f2 GE F D, CHEN Y Q, KOU C H. Boundary Feedback Stabilisation for the Time Fractional-Order Anomalous Diffusion System[J]. IET Control Theory and Applications, 2016, 10(11):1250-1257. [6] GUO C, XIE C. Stabilization of Spatially Non-Causal Reaction-Diffusion Equation[C]//24th Control and Decision Conference (CCDC). New York: IEEE Computer Society Press, 2012. [7] 吴强, 黄建华.分数阶微积分[M].北京: 清华大学出版社, 2016: 1-87. [8] doi: http://cn.bing.com/academic/profile?id=79ea68dd530895113ca4ec2e51d81b58&encoded=0&v=paper_preview&mkt=zh-cn LI Y, CHEN Y Q, PODLUBNY I. Technical Communique:Mittag-Leffler Stability of Fractional-Order Nonlinear Dynamic Systems[J]. Automatica, 2009, 45(8):1965-1969. [9] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1207.7357 AGUILA C N, DUARTE M A, GALLEGOSALL J A. Lyapunov Functions for Fractional-Order Systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):2951-2957. [10] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e2d0cb43c760fb53857b5c7884c56a5 CRUZ V-D-L. Volterra-Type Lyapunov Functions for Fractional-Order Epidemic Systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 24(1-3):75-85.
计量
- 文章访问数: 662
- HTML全文浏览数: 662
- PDF下载数: 22
- 施引文献: 0