-
由导体外磁信号重建导体内部电源分布是磁异常探测关键算法,被广泛应用于地球物理、生物医学、低频通信、基础设施安全检查和资源勘探等领域[1].它可采用麦克斯韦逆向方程进行求解,但其结果是不适定的,须在满足条件的解集中施加限制条件而获取合理的数值解.逆向方程常见的解析方法包括最小范数解、加权最小范数解、迭代算法和最大熵算法等[2].最小范数解是基于Moore-Penrose广义逆的线性方程组解,通常采用奇异值分解算法来求解广义逆[3-4];加权最小范数解是使用一个加权矩阵,在满足方程解集中,寻找一个解使其加权范数为最小[5].这两种方法不断优化取舍奇异值,可降低噪声影响并减少有用信息丢失,但可能会遇到解的不稳定性问题,造成解对测量误差值过分敏感.迭代算法不断用假定解集递推实测数值,通过最小化两者误差逐步接近信号解析源的最可能值.当测量结果存在误差时,迭代过程收敛到局域最小值就成了难题,且该算法对于实时求解计算效率具有很高要求[6].最大熵算法在满足方程的解集中,要求该解满足一个熵函数为最大,它可提高分辨率并抑制噪声[7].该算法最主要的问题是存在非线性,对解析结果难以做出定量分析,数值解析过程复杂且计算耗时长.
逆向求解方程可采用点源矢量作为一种限制条件,由于不设重构网格,因而无需固定点源矢量空间位置,因此这种信号增益矩阵是未知的,其信号方程对应于一个非线性方程组.对于基于点源矢量逆向求解方程解析方法的基本思想是确定一个目标函数,寻找一组点源矢量,使其目标函数达到最小,其本质是将目标函数转化为非线性最小优化问题[8].目前大多数逆向求解方程解析方法计算量大,极为耗时,且信号解析源定位精度有待提高.本研究提出一例逆向求解方程的解析方法,可用于求解信号解析源测量数据所对应的点源矢量,其本质是一种基于傅里叶变换的数值解析方法,计算过程无需迭代计算,从而降低了对计算手段效率的要求.
An Analytical Method for Inverse Solution Equation Based on Point Source Vector
-
摘要: 电磁场逆向问题是由导体外获取的磁信号来重建导体内部电源,通常采用麦克斯韦逆向方程进行求解.基于该方程存在非唯一解,提出了一种基于点源矢量模型的数值解析方法.首先建立点源矢量的数学模型,其次构造磁信号强度矢量一阶梯度正交矩阵,并应用欧拉线性关系获取点源矢量位置;然后在准静态条件下引入格林函数和波平面,并施以傅里叶逆变换来获取傅氏空间方程解.长方体磁源仿真结果表明本解析方法的准确度和可靠性.Abstract: Aiming at the existence of a non-unique solution for inverse solution equation, one analytical method for inverse solution equation based on point source vector model is proposed in this paper. Firstly, a mathematical model of point source vector is established. Next, a first-order gradient orthogonal matrix of magnetic induction intensity vector signal is constructed, the eigenvalues and the coordinates of the point source vector are established by using the Euler linear relation equation, and the position of point source vector is obtained. Then, the Green's function and wave plane are introduced to perform double Fourier transform, and the inverse Fourier transform is applied to obtain the solution of Fourier space equation. Finally, the accuracy and reliability of the analytical method are verified by a simulation experiment of inverse solution equation with a cuboid magnetic source.
-
Key words:
- inverse solution equation /
- mathematical model /
- point source vector /
- Fourier integral transform .
-
[1] TANG Y, LIU Z Y, PANM C, et al. Detection of Magnetic Anomaly Signal Based on Information Entropy of Differential Signal [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 512-516. doi: 10.1109/LGRS.2018.2797365 [2] doi: http://www.researchgate.net/publication/258401321_A_Survey_on_Inverse_Problems_for_Applied_Sciences YAMAN F, YAKHNO V G, POTTHAST R. A Survey on Inverse Problems for Applied Sciences [J]. Mathematical Problems in Engineering, 2013, 2013: 1-19. [3] HINCAPIÉ A S, KUJALA J, MATTOUT J, et al. The Impact of MEG Source Reconstruction Method on Source-space Connectivity Estimation: a Comparison between Minimum-norm Solution and Beamforming [J]. NeuroImage, 2017, 156: 29-42. doi: 10.1016/j.neuroimage.2017.04.038 [4] 赵清梅, 张俊容.最优控制问题的Tikhonov正则化[J].西南大学学报(自然科学版), 2019, 41(5): 59-63. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.05.010 [5] HASSAN M, DUFOR O, MERLET I, et al. EEG Source Connectivity Analysis: From Dense Array Recordings to Brain Networks [J]. PLoS One, 2014, 9(8): e105041. DOI: 10. 1371/journal. pone. 0105041. [6] TURCO E. Tools for the Numerical Solution of Inverse Problems in Structural Mechanics: Review and Research Perspectives [J]. European Journal of Environmental and Civil Engineering, 2017, 21(5): 509-554. doi: 10.1080/19648189.2015.1134673 [7] AWAN F G, SALEEM O, KIRAN A. Recent Trends and Advances in Solving the Inverse Problem for EEG Source Localization [J]. Inverse Problems in Science and Engineering, 2019, 27(11): 1521-1536. doi: 10.1080/17415977.2018.1490279 [8] 朱红毅.基于脑磁图的电流偶极子反演研究[D].杭州: 浙江大学, 2005. http://cdmd.cnki.com.cn/article/cdmd-10335-2005092866.htm [9] FROLOV V P, KRTOUŠ P, KUBIZ ÁK D. Separation of Variables in Maxwell Equations in Plebański-Demiański Spacetime [J]. Physical Review D, 2018, 97(10): 101701. doi: 10.1103/PhysRevD.97.101701[10] FERREIRA J M, ANACLETO J. The Magnetic Field Circulation Counterpart to Biot-Savart's Law [J]. The European Physical Journal Plus, 2018, 133(6): 234. doi: 10.1140/epjp/i2018-12097-7 [11] PRIMIN M A, NEDAIVODA I V, MASLENNIKOV Y V, et al. Softwarefor the Magnetocardiographic Complex for the Early Diagnostics and Monitoring of Heart Diseases [J]. Journal of Communications Technology and Electronics, 2010, 55(10): 1169-1186. doi: 10.1134/S1064226910100116 [12] FAGALY R L. SuperconductingQuantum Interference Device Instruments and Applications [J]. Review of Scientific Instruments, 2006, 77(10): 101101. doi: 10.1063/1.2354545 [13] 钟青, 乔蔚川.超导量子干涉器及应用[J].现代计量测试, 1998(3): 3-7. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800621874