-
开放科学(资源服务)标志码(OSID):
-
在农业生产中,人们大量使用氮肥以提高作物产量. 近年来,中国农业生产中的化肥投入量增长十分迅速,高强度的化肥施用给生态和环境带来了显著的负面影响. 农田中的氮、磷随地表径流进入受纳水体,或随地下水渗入土壤,引起农业面源性富营养化,土壤污染、面源污染严重[1]. 氮肥对增产有显著作用,但也会影响CH4,CO2和N2O等农田温室气体排放. CH4,CO2和N2O是导致全球变暖的3种主要温室气体,而旱地农田土壤是CO2和N2O的主要排放源,其温室效应不容忽视[2]. 玉米作为我国最大的粮食作物,在缓解饲料短缺、保障粮食安全方面发挥着重要作用[3]. 因此,探究不同施氮量对温室气体排放特征和作物产量的影响,确定合理的施氮量,对提高作物产量、减少农业温室气体排放具有重要的实际应用价值.
种植模式[4]、施肥方式[5]等会影响作物产量,而氮肥是影响鲜食玉米产量和品质的重要因素之一[6]. 大量田间实验表明,增加氮肥施用量可提高作物产量[4, 7],但大量施用化肥会产生过多的温室气体[8]. Qiu等[9]研究指出在旱地生态系统中,施氮显著增加了土壤N2O和CO2排放;Shcherbak等[10]发现随着施氮量的增加,N2O排放量会呈指数型增加. 也有研究发现,在稻麦系统中,当施氮量从270 kg/hm2降低到190 kg/hm2时,N2O累积排放量将减少26.0%~34.4%. 高氮肥施加量可增强植物光合作用,刺激根系微生物,土壤呼吸增强,导致较高CO2排放量[11]. 适宜施氮量可促进青贮玉米干物质积累和水分高效利用,保证玉米根际养分的有效供给,营造良好的根际土壤环境,提高氮素利用效率,提高玉米籽粒产量[7],表明合理施氮对温室气体排放及玉米产量有极其重要意义. 以往的研究重点多在于玉米地N2O和CO2气体的排放[8, 9, 12],尽管旱地系统不是CH4排放的重要来源,但是探究氮肥用量对玉米地CH4通量的定量作用,对于明确氮肥对玉米生态系统综合温室效应的影响具有一定的指导意义.
黄壤是西南地区主要土壤类型之一,主要分布于贵州、四川、云南等省. 贵州黄壤面积超过700万hm2,约占全国黄土总面积的30%,其中旱耕地约460万hm2,占全国旱耕地面积的46%左右[13]. 贵州属喀斯特山区,降雨分布不均,且土壤质地较粘,酸性强,土壤交换性碱质量分数低. 虽然黄土表层有机质质量分数较高,但土壤氮素转化淋溶现象尤为突出,导致黄土氮库明显不足[13]. 氮肥增产的同时增加了温室气体排放,因此如何提高黄壤土氮肥有效性,实现玉米增产稳产、温室气体减排是亟待解决的重要问题. 本研究在贵州黄壤地开展大田试验,分析不同氮肥施用量对玉米产量以及贵州黄壤土温室气体排放的影响,旨在为旱地黄壤土合理施肥,玉米增产稳产,温室气体减排提供理论依据.
Effects of Nitrogen Fertilizer on Greenhouse Gas Emissions and Maize Yield in Yellow Soils
-
摘要: 为比较不同氮肥施用量对农田温室气体排放强度、玉米产量、全球增温潜势及温室气体排放强度的影响,正确认识氮肥在农田温室气体排放的贡献,为化肥减量增效,玉米增产稳产,降低综合温室效应,实现农业可持续发展提供科学依据,采用大田试验,以玉米为供试作物,设置当地传统施肥(CF100)、氮肥减量30%(CF70),氮肥减量50%(CF50)和不施肥(CK)4个处理,采用静态箱—气相色谱法测定贵州典型黄壤玉米生长季,分析不同施氮梯度下作物产量和温室气体排放特征. 结果表明,与CK相比,施氮处理均提高了CO2,CH4和N2O的平均排放通量和累积排放量,但是施氮处理之间差异均无统计学意义. 全球增温潜势(GWP)在CF50,CF70,CF100处理下分别显著增加了36.78%,52.14%和50.22%,三者之间差异无统计学意义. 施用氮肥显著增加玉米产量,CF100与CF70产量无显著差异,与CF50相比,分别显著增加了16.33%和13.53%(p<0.05). 温室气体排放强度(GHGI)在CF50,CF70,CF100处理下分别显著降低了57.88%,60.15%和60.94%,但是施氮处理之间差异无统计学意义. 施氮处理可降低土壤pH值、增加土壤全氮(TN)、全磷(TP)质量分数,而有机碳质量分数呈先增后减趋势. 施用氮肥会增加温室气体的排放,但可显著提高作物产量. 从产量和GHGI角度来看,CF70与CF100产量、GHGI差异均无统计学意义(p>0.05). 因此,为实现较高的玉米产量和较低的温室气体排放,实现化肥减量增效,氮肥减量30%的施肥方式符合该区农业可持续发展目标.Abstract: To explored the effects of different rates of nitrogen fertilizer on the greenhouse gas (CO2, CH4 and N2O) emissions, maize yield, global warming potential and greenhouse gas emission intensity, understand the contribution of nitrogen fertilizer to the greenhouse gas emissions, provide scientific basis for stabilizing production, reducing the comprehensive greenhouse effect, and realize the sustainable development of agriculture. In the field experiment, maize was used as the test crop. Four nitrogen application rates were set up, including the local traditional fertilization (CF100), 30% reduction in nitrogen fertilizer (CF70), 50% reduction in nitrogen fertilizer (CF50) and no fertilization (CK). The static chamber-gas chromatography method was used to determine the greenhouse gas fluxes during the maize growing. The crop yields of different nitrogen application rates for the typical yellow soil in Guizhou were measured at harvest. Compared to CK, nitrogen application increased the average emission flux and cumulative emission of CO2, CH4 and N2O, but there was no significant difference among the nitrogen application treatments. The global warming potential (GWP) increased significantly by 36.78%, 52.14% and 50.22% under the treatment of CF50, CF70 and CF100, respectively. The application of nitrogen fertilizer significantly increased the yield of maize. There was no significant difference between CF100 and CF70. Compared to CF50, the yield of CF100 and CF70 was increased by 16.33% and 13.53%, respectively (p < 0.05). Greenhouse gas emission intensity (GHGI) was significantly reduced by 57.88%, 60.15% and 60.94% under CF50, CF70 and CF100 treatments, respectively, but there was no significant difference among nitrogen application treatments. Nitrogen application treatment could decrease soil pH value and increase the contents of soil total nitrogen (TN) and total phosphorus (TP). The content of organic carbon increased first and then decreased. Application of nitrogen fertilizer could increase the greenhouse gas emissions, but can significantly increase the crop yield. There were no significant differences in grain yield and GHGI between CF70 and CF100 treatments (p > 0.05). Therefore, to achieve high maize yield and low greenhouse gas emissions, the 30% of fertilization reduction based on the application of local traditional nitrogen fertilizer would be the management to achieve the sustainable agriculture development.
-
表 1 不同施氮处理玉米生长季农田土壤温室气体平均排放通量(平均值±标准误)
处理 CO2/(mg·m-2·h-1) CH4/(μg·m-2·h-1) N2O/(μg·m-2·h-1) CK 48.10±3.52b -15.15±2.39b 6.67±2.08b CF50 77.33±9.98a 0.68±2.17a 12.52±1.16ab CF70 85.88±6.70a -4.76±3.89ab 22.71±9.24ab CF100 66.87±2.38ab 0.22±5.33a 28.24±3.88a 注:同一列不同小写字母表示各处理间差异有统计学意义(p<0.05). 下同. 表 2 不同施氮处理玉米生长季农田土壤温室气体累积排放通量和全球增温潜势(平均值±标准误)
处理 CO2累积排放量/(kg·hm-2) CH4累积排放量/(kg·hm-2) N2O累积排放量/(kg·hm-2) 全球增温潜势/(kg·hm-2) CK 1 689.43±28.46b -0.65±0.08b 0.41±0.17a 1 798.07±78.53b CF50 2 288.15±289.35a 0.15±0.42a 0.55±0.13a 2 470.67±260.93a CF70 2 427.16±66.89a -0.51±0.57ab 1.07±0.58a 2 800.65±220.93a CF100 2 331.80±117.85a -0.19±0.18ab 1.25±0.25a 2 703.93±45.69a 表 3 不同施氮处理玉米生长季净初级生产力(平均值±标准误)
处理 地上部/(kg·hm-2) 根部/(kg·hm-2) 凋落物/(kg·hm-2) 根系沉积物/(kg·hm-2) 净初级生产力/(kg·hm-2) CK 6 190.58±641.43c 557.15±57.75c 309.53±32.07c 841.64±87.21c 7 891.26±817.64c CF50 13 130.57±927.59b 1181.75±83.48b 656.53±46.38b 1 785.17±126.11b 16 737.79±1 182.42b CF70 15 041.65±79.44a 1353.45±7.15a 752.08±3.97a 2 044.99±10.8a 19 173.88±101.26a CF100 15 684.46±225.11a 1411.60±20.26a 784.23±11.26a 2132.38±30.6a 19 993.28±286.95a 表 4 不同施氮处理土壤基本理化性质(平均值±标准误)
处理 pH值 SOC/(g·kg-1) TN/(g·kg-1) TP/(g·kg-1) C/N CK 5.77±0.05a 25.58±0.19b 1.50±0.074 a 0.30±0.05a 17.10±0.91 a CF50 5.72±0.07a 27.63±0.37a 1.80±0.13 a 0.33±0.02a 15.50±1.32 a CF70 5.50±0.04b 28.01±0.62a 1.90±0.25 a 0.35±0.01a 15.14±1.65 a CF100 5.48±0.03b 26.72±0.56ab 1.93±0.14 a 0.31±0.01a 14.00±1.32 a -
[1] WANG A, TANG L H, YANG D W, et al. Spatio-Temporal Variation of Net Anthropogenic Nitrogen Inputs in the Upper Yangtze River Basin from 1990 to 2012[J]. Science China Earth Sciences, 2016, 59(11): 2189-2201. doi: 10.1007/s11430-016-0014-6 [2] 熊浩, 张保成, 李建柱, 等. 灌水量对冬小麦农田土壤N2O与CO2排放的影响[J]. 灌溉排水学报, 2020, 39(9): 41-50. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202009007.htm [3] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001 [4] 李巧玲, 肖忠, 安杰, 等. 不同间作模式对田间杂草防控及栀子产量的影响[J]. 西南师范大学学报(自然科学版), 2021, 46(3): 172-178. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202103024.htm [5] 方林发, 张宇亭, 谢军, 等. 氮肥用量和运筹对冷浸田水稻产量和氮素利用率的影响[J]. 西南大学学报(自然科学版), 2020, 42(3): 53-60. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.03.008 [6] 蒋达波, 宗秀虹, 李帮秀, 等. 氮素胁迫对玉米光合及叶绿素荧光参数的影响[J]. 西南师范大学学报(自然科学版), 2015, 40(1): 135-139. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201501023.htm [7] 张学林, 徐钧, 安婷婷, 等. 不同氮肥水平下玉米根际土壤特性与产量的关系[J]. 中国农业科学, 2016, 49(14): 2687-2699. doi: 10.3864/j.issn.0578-1752.2016.14.004 [8] 李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J]. 中国农业科学, 2015, 48(21): 4381-4389. doi: 10.3864/j.issn.0578-1752.2015.21.018 [9] QIU W H, LIU J S, LI B Y, et al. N2O and CO2 Emissions from a Dryland Wheat Cropping System with Long-Term N Fertilization and Their Relationships with Soil C, N, and Bacterial Community[J]. Environmental Science and Pollution Research International, 2020, 27(8): 8673-8683. doi: 10.1007/s11356-019-07534-4 [10] SHCHERBAK I, MILLAR N, ROBERTSON G P. Global Metaanalysis of the Nonlinear Response of Soil Nitrous Oxide (N2O) Emissions to Fertilizer Nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204. doi: 10.1073/pnas.1322434111 [11] 齐鹏, 王晓娇, 姚一铭, 等. 不同耕作方法和施氮量对旱作农田土壤CO2排放及碳平衡的影响[J]. 草业学报, 2021, 30(1): 96-106. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB202101010.htm [12] WANG X L, CHEN Y, YANG K P, et al. Effects of Legume Intercropping and Nitrogen Input on Net Greenhouse Gas Balances, Intensity, Carbon Footprint and Crop Productivity in Sweet Maize Cropland in South China[J]. Journal of Cleaner Production, 2021, 314: 127997. doi: 10.1016/j.jclepro.2021.127997 [13] 赵堂甫, 赵欢, 肖厚军, 等. 缓释肥对贵州黄壤地辣椒产量、品质及肥料利用率的影响[J]. 西南农业学报, 2019, 32(10): 2373-2377. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201910019.htm [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 1981. [15] 徐驰, 谢海宽, 丁武汉, 等. 油菜-水稻复种系统一次性施肥对CH4和N2O净排放的影响[J]. 中国农业科学, 2018, 51(20): 3972-3984. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201820021.htm [16] 张学良, 张宇亭, 刘瑞, 等. 绿肥不同还田方式对土壤温室气体排放的影响[J]. 草业学报, 2021, 30(5): 25-33. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB202105003.htm [17] LEE H H, KIM S U, HAN H R, et al. Mitigation of Global Warming Potential and Greenhouse Gas Intensity in Arable Soil with Green Manure as Source of Nitrogen[J]. Environmental Pollution, 2021, 288: 117724. doi: 10.1016/j.envpol.2021.117724 [18] HUANG Y, ZHANG W, SUN W J, et al. Net Primary Production of Chinese Croplands from 1950 to 1999[J]. Ecological Applications, 2007, 17(3): 692-701. doi: 10.1890/05-1792 [19] CATES A M, JACKSON R D. Cover Crop Effects on Net Ecosystem Carbon Balance in Grain and Silage Maize[J]. Agronomy Journal, 2019, 111(1): 30-38. doi: 10.2134/agronj2018.01.0045 [20] 李晓菡, 邹俊亮, 武菊英, 等. 土壤呼吸和有机碳对增温的响应及其影响因素分析[J]. 地球与环境, 2022, 50(1): 73-82. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202201008.htm [21] 李赟, 王春梅, 高士杰, 等. 模拟增温和氮沉降的耦合作用对高寒泥炭湿地土壤碳激发效应的影响[J]. 环境化学, 2021, 40(8): 2430-2438. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202108016.htm [22] 叶德练, 齐瑞娟, 张明才, 等. 节水灌溉对冬小麦田土壤微生物特性、土壤酶活性和养分的调控研究[J]. 华北农学报, 2016, 31(1): 224-231. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201601037.htm [23] 鄢紫薇, 高璟赟, 张秀玲, 等. 不同水分处理对华中地区稻田土壤酶活性的影响[J]. 农业环境科学学报, 2022, 41(1): 91-98. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202201011.htm [24] LIU Y H, SHAHBAZ M, GE T D, et al. Effects of Root Exudate Stoichiometry on CO2 Emission from Paddy Soil[J]. European Journal of Soil Biology, 2020, 101: 103247. [25] JIN W Y, LI M, HE Y H, et al. Effects of Different Levels of Nitrogen Fertilization on Soil Respiration during Growing Season in Winter Wheat (Triticum Aestivum)[J]. Chinese Journal of Plant Ecology, 2015, 39(3): 249-257. [26] 李睿达, 张凯, 苏丹, 等. 施氮强度对不同土壤有机碳水平桉树林温室气体通量的影响[J]. 环境科学, 2014, 35(10): 3903-3910. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201410042.htm [27] TAFAZOLI M, HOJJATI S M, JALILVAND H, et al. Effect of Nitrogen Addition on Soil CO2 Efflux and Fine Root Biomass in Maple Monocultures of the Hyrcanian Region[J]. Annals of Forest Science, 2021, 78(2): 1-11. [28] KANDEL T P, GOWDA P H, NORTHUP B K. Influence of Tillage Systems, and Forms and Rates of Nitrogen Fertilizers on CO2 and N2O Fluxes from Winter Wheat Cultivation in Oklahoma[J]. Agronomy, 2020, 10(3): 320. [29] 涂婷婷, 江长胜, 胡曼利, 等. 地膜覆盖和施氮对菜地CO2通量的影响[J]. 环境科学学报, 2021, 41(11): 4720-4730. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202111042.htm [30] 于伟家, 李雪松, 陈竹君, 等. 氮肥对不同无机碳含量土壤二氧化碳释放的影响[J]. 应用生态学报, 2018, 29(8): 2493-2500. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201808006.htm [31] 李平, 郎漫, 李淼, 等. 不同施肥处理对东北黑土温室气体排放的短期影响[J]. 环境科学, 2018, 39(5): 2360-2367. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201805045.htm [32] doi: https://www.sciencedirect.com/science/article/pii/S0167198711000419 LI D M, LIU M Q, CHENG Y H, et al. Methane Emissions from Double-Rice Cropping System under Conventional and no Tillage in Southeast China[J]. Soil and Tillage Research, 2011, 113(2): 77-81. [33] 李志国, 张润花, 赖冬梅, 等. 西北干旱区两种不同栽培管理措施下棉田CH4和N2O排放通量研究[J]. 土壤学报, 2012, 49(5): 924-934. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201205010.htm [34] 谢立勇, 叶丹丹, 张贺, 等. 旱地土壤温室气体排放影响因子及减排增汇措施分析[J]. 中国农业气象, 2011, 32(4): 481-487. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201104002.htm [35] 王楷, 史雷, 马龙, 等. 有机无机配施下西北旱区麦田土壤N2O的排放特征及微生物特性[J]. 环境科学, 2021, 42(12): 6038-6046. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202112048.htm [36] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792-800. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402060.htm [37] 姚凡云, 刘志铭, 曹玉军, 等. 不同类型氮肥对东北春玉米土壤N2O和CO2昼夜排放的影响[J]. 中国农业科学, 2021, 54(17): 3680-3690. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202117010.htm [38] doi: https://link.springer.com/article/10.1007/BF00748937 DOBBIE K E, SMITH K A. Nitrous Oxide Emission Factors for Agricultural Soils in Great Britain: The Impact of Soil Water-Filled Pore Space and other Controlling Variables[J]. Global Change Biology, 2003, 9(2): 204-218. [39] 郝耀旭, 刘继璇, 袁梦轩, 等. 长期定位有机物料还田对关中平原冬小麦-玉米轮作土壤N2O排放的影响[J]. 环境科学, 2017, 38(6): 2586-2593. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201706053.htm [40] 高焕平, 刘世亮, 赵颖, 等. 秸秆与氮肥调节C/N比对潮土CH4, CO2和N2O排放/吸收的影响[J]. 土壤通报, 2019, 50(1): 157-164. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201901024.htm [41] 许宏伟, 李娜, 冯永忠, 等. 氮肥和秸秆还田方式对麦玉轮作土壤N2O排放的影响[J]. 环境科学, 2020, 41(12): 5668-5676. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012053.htm [42] 陈津赛, 孙玮皓, 王广帅, 等. 不同施氮量对麦田土壤水稳性团聚体和N2O排放的影响[J]. 应用生态学报, 2021, 32(11): 3961-3968. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202111020.htm [43] 游成铭, 胡中民, 郭群, 等. 氮添加对内蒙古温带典型草原生态系统碳交换的影响[J]. 生态学报, 2016, 36(8): 2142-2150. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201608005.htm [44] 张雅蓉, 李渝, 刘彦伶, 等. 长期施肥对黄壤有机碳平衡及玉米产量的影响[J]. 土壤学报, 2016, 53(5): 1275-1285. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605018.htm [45] doi: https://academic.oup.com/jxb/article/64/5/1181/631233 SHEN J B, LI C J, MI G H, et al. Maximizing Root/Rhizosphere Efficiency to Improve Crop Productivity and Nutrient Use Efficiency in Intensive Agriculture of China[J]. Journal of Experimental Botany, 2013, 64(5): 1181-1192. [46] 马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, 32(17): 5502-5511. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201217024.htm [47] JING J, ZHANG F, RENGEL Z, et al. Localized Fertilization with P Plus N Elicits an Ammonium-Dependent Enhancement of Maize Root Growth and Nutrient Uptake[J]. Field Crops Research, 2012, 133: 176-185. [48] doi: https://www.sciencedirect.com/science/article/pii/S0378377415300706 LI S X, WANG Z H, LI S Q, et al. Effect of Nitrogen Fertilization under Plastic Mulched and Non-Plastic Mulched Conditions on Water Use by Maize Plants in Dryland Areas of China[J]. Agricultural Water Management, 2015, 162: 15-32. [49] 吕鹏, 张吉旺, 刘伟, 等. 施氮量对超高产夏玉米产量及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2011, 17(4): 852-860. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201104013.htm [50] 罗上轲, 刘婕, 叶开梅, 等. 覆膜方式与施氮量对春玉米产量、干物质和氮素积累与转运的影响[J]. 玉米科学, 2020, 28(4): 146-154, 164. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX202004022.htm [51] 卢九斤, 聂易丰, 魏娇娇, 等. 不同施氮措施对枸杞园土壤NH3挥发和N2O排放的影响[J]. 农业环境科学学报, 2022, 41(1): 210-220. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202201024.htm [52] 赵星涵, 刘东, 黄凯, 等. 我国北方几种玉米和设施菜地土壤的N2O和N2排放特征[J]. 应用生态学报, 2021, 32(9): 3204-3212. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202109020.htm [53] 牛东, 潘慧, 丛美娟, 等. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响[J]. 麦类作物学报, 2016, 36(12): 1667-1673. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201612022.htm [54] 郝小雨, 周宝库, 马星竹, 等. 氮肥管理措施对黑土玉米田温室气体排放的影响[J]. 中国环境科学, 2015, 35(11): 3227-3238. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201511005.htm [55] doi: https://www.sciencedirect.com/science/article/pii/S0167880912004264 MA Y C, KONG X W, YANG B, et al. Net Global Warming Potential and Greenhouse Gas Intensity of Annual Rice-Wheat Rotations with Integrated Soil-Crop System Management[J]. Agriculture, Ecosystems & Environment, 2013, 164: 209-219. [56] LI C J, XIONG Y W, HUANG Q Z, et al. Impact of Irrigation and Fertilization Regimes on Greenhouse Gas Emissions from Soil of Mulching Cultivated Maize (Zea Mays L. ) Field in the Upper Reaches of Yellow River, China[J]. Journal of Cleaner Production, 2020, 259: 120873.