-
开放科学(资源服务)标志码(OSID):
-
光合作用是产量形成的基础,从能量转化角度讲,影响水稻产量潜力的主要因素包括:光吸收量、光能利用效率和收获指数[1],而当前水稻收获指数已接近理论上限[2],难以依靠优化收获指数来大幅提高水稻的产量. 因此,提高光合适应能力,促进生育前期获得较高光合物质基础,在维持较高收获指数基础上进一步提高光能利用效率以形成较高的生物量是实现水稻高产的重要途径[3-5].
西南地区是我国重要的水稻栽培区,但生育前期长期的阴雨寡日照、自然光照弱等客观因素致使冠层内叶片光合速率低,难以在生育前期获得较好的光合物质基础. 提高低光光适应能力进而提升低光光能利用效率成为该区域水稻光合适应性研究的重要目标. 水稻低光光能利用效率具有高度遗传特性,是影响水稻生物量形成的关键因素之一,且育成水稻品种之间低光光能利用效率存在很大变异,尚未在人工驯化过程中受到强烈选择[6]. 因此,低光光适应能力强的基因及资源材料挖掘成为进一步提高水稻产量的重要研究方向.
光合有效辐射(PPFD)不仅影响植物叶片的形态学特征变化(如光合色素质量分数)[7-8],还会对叶片的光合生理特征(如光合电子传递效率、光合碳同化效率)产生显著的调节作用[9-10]. 这些生理特征均会影响叶片的光合能力和光能利用效率. 除单叶水平光合效率外,保持合理的单株叶片面积也是提高作物群体光合和光能利用效率的重要基础,适宜的单株叶片面积可以显著改善群体光合物质的产出,进而促进作物产量的形成[11].
前期研究发现,嘌呤合成途径基因(Virescent-Albino Leaf 1,VAL1)编码蛋白VAL1,是嘌呤生物合成途径中的关键基因,参与调节水稻叶片发育过程中的叶绿体发育、叶绿素代谢和细胞分裂. 通过将VAL1在野生型材料中超表达,获得了光合速率显著提高且表型稳定的水稻株系(VAL1-OE)[12]. 本研究测定结果显示,VAL1-OE水稻具备同时适应低光和高光环境的典型生理特性,这表明VAL1-OE水稻同时拥有高效利用低光和高光的能力. 在自然界中,很少发现同时具备适应低光和高光能力的天然植物[13],这一特性使VAL1-OE水稻成为开展光合适应性研究的优势材料. 本文拟通过研究VAL1-OE与野生型材料在光合色素合成、光能吸收及光合碳同化效率等生理途径的差异,揭示VAL1-OE水稻增强光合适应能力及提高光合碳同化速率的调控机制,为挖掘寡日照地区水稻增产潜力,筛选光照广适稻种资源提供参考.
Study on the Physiological Mechanism of Photosynthetic Regulation of VAL1 Overexpression in Rice (Oryza sativa L.)
-
摘要: 以提高作物产量为目的的高光效研究已成为作物育种学和栽培学共同关注的热点问题. 针对寡日照限制我国特别是西南地区水稻产量提升这一问题,以前期研究获得的嘌呤合成途径基因(VAL1)水稻植株(VAL1-OE)为材料,从确定光能利用效率提升的限制因子入手,利用其光合色素质量分数和光合速率均显著提高这一特点,开展水稻光合调控生理机制研究. 结果表明:VAL1-OE水稻叶片叶绿体发育和光合相关基因,如捕光复合体II叶绿素a/b结合蛋白基因(LhcpII),编码PS I P700叶绿素a脱辅基蛋白A1基因(psaA),PS II D1蛋白基因(psbA),细胞色素f脱辅基蛋白基因(petA),细胞色素b6-f复合体小亚基基因(petG),核酮糖-1,5-二磷酸羧化酶/加氧酶大亚基基因(rbcL),核酮糖-1,5-二磷酸羧化酶/加氧酶小亚基基因(RbcS)和叶绿体ATP合成酶α亚基基因(atpA),这些编码基因转录水平均显著上调. 此外,VAL1-OE水稻叶片比叶质量、光合色素质量分数显著增高. 在低光和高光条件下,电子传递速率(ETR)、净光合速率(A)和光能利用效率(LUE)均显著高于野生型水稻叶片,但VAL1-OE水稻单株面积较低,干物质累积和产量未显著增加. 研究结果显示:超表达VAL1水稻优化叶片光能吸收、电子传递和碳同化是提高光合作用和光能利用效率的关键. 光合面积较小成为制约VAL1超表达水稻获得更多干物质累积和产量的主要因素. 以VAL1超表达水稻为基础,在实现高光合能力的同时,培育高叶面积表型材料,提高光合作用面积是进一步提高该水稻材料干物质累积量和产量的突破口.
-
关键词:
- 嘌呤合成途径基因VAL1 /
- 超表达 /
- 水稻 /
- 光合作用 /
- 生理调控
Abstract: The study of high light efficiency for the purpose of improving crop yield has become a hot issue of common concern in crop breeding and cultivation. Aiming at the problem of rice yield improvement in China, especially in southwest China, this project uses the chloroplast gene (VAL1) overexpression rice plant (VAL1-OE) obtained in the previous study as the material, starts from determining the restriction factor of light energy utilization efficiency, and uses the characteristics of significantly increased photosynthetic pigment content and photosynthetic rate to study the physiological mechanism of rice photosynthetic regulation. The experimental results showed that leaf chloroplast development and photosynthesis-related genes of VAL1-OE rice, such as the light-harvesting chlorophyll a/b binding protein of PSII gene (LhcpII), P700 chlorophyll a A1 decoprotein gene (psaA), PS II D1 protein gene (psbA), cytochrome f gene (petA), cytochrome b6-f complex subunit gene (petG), riboketo-1, 5-diphosphate carboxylase/Oxygenase large subunit gene (rbcL), ribotose-1, 5-diphosphate carboxylase/oxygenase small subunit gene (RbcS), and chloroplast ATP synthetase α subunit gene, their transcription levels were significantly upregulated. In addition, the leaf mass per unit area and the photosynthetic pigment content of VAL1-OE rice leaves were significantly increased. Under both low and high light conditions, the electron transfer rate (ETR), net photosynthetic rate (A) and light energy utilization efficiency (LUE) were significantly higher than those of wild-type rice. However, the total leave area per plant of VAL1-OE rice is low. The dry matter accumulation and yield of VAL1-OE rice were not increased significantly. The results show that the optimization of leaf light energy absorption, electron transport and carbon assimilation in VAL1 overexpression rice is the key to improve photosynthesis and light energy use efficiency. The small photosynthetic area has become the main factor restricting the accumulation of more dry matter and higher yield of VAL1 overexpression rice. Based on VAL1 overexpression rice, while achieving high photosynthetic capacity, selecting the phenotypic materials with high leaf area to increase the photosynthetic area is a breakthrough to further improve the dry matter accumulation and yield of this rice material.-
Key words:
- purine synthetic pathway gene VAL1 /
- overexpression /
- rice /
- photosynthesis /
- physiological regulation .
-
表 1 物质累积和产量构成因素
材料 抽穗期干物质量/g 穗长/cm 实粒数/粒 瘪粒数/粒 穗数/个 千粒质量/g 总产量/g WT 44.1±3.72a 24.29±1.20a 125.56±29.38a 19.33±5.00a 12.00±1.73a 282.4±4.48a 957.45±174.44a VAL1-OE 45.42±6.97a 26.57±1.87a 126.11±26.94a 25.89±7.72a 11.67±2.31a 274.4±6.63a 908.38±28.95a 注:表中同一列数据小写字母相同表示p<0.05,差异无统计学意义. -
[1] LONG S P, ZHU X G, NAIDU S L, et al. Can Improvement in Photosynthesis Increase Crop Yields?[J]. Plant, Cell & Environment, 2006, 29(3): 315-330. [2] HAY R. Harvest Index: A Review of Its Use in Plant Breeding and Crop Physiology[J]. Annals of Applied Biology, 1995, 126(1): 197-216. doi: 10.1111/j.1744-7348.1995.tb05015.x [3] 张洪程, 王夫玉. 中国水稻群体研究进展[J]. 中国水稻科学, 2001, 15(1): 51-56. doi: 10.3321/j.issn:1001-7216.2001.01.010 [4] 袁隆平. 水稻强化栽培体系[J]. 杂交水稻, 2001, 16(4): 1-3. doi: 10.3969/j.issn.1005-3956.2001.04.001 [5] 焦颖瑞, 李玲依, 杨仕会, 等. 长江上游水稻耐热性鉴定模型的构建与应用[J]. 西南大学学报(自然科学版), 2022, 44(11): 39-50. doi: 10.13718/j.cnki.xdzk.2022.11.004 doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2022.11.004 doi: 10.13718/j.cnki.xdzk.2022.11.004 [6] QU M, ZHENG G, HAMDANI S, et al. Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey[J]. Plant Physiology, 2017, 175(1): 248-258. doi: 10.1104/pp.17.00332 [7] FENG Y L, LEI Y B, WANG R F, et al. Evolutionary Tradeoffs for Nitrogen Allocation to Photosynthesis Versus Cell Walls in An Invasive Plant[J]. Proceedings of the National Academy of Sciences, 2009, 106: 1853-1856. doi: 10.1073/pnas.0808434106 [8] YAO H, ZHANG Y, YI X, et al. Plant Density Alters Nitrogen Partitioning among Photosynthetic Components, Leaf Photosynthetic Capacity and Photosynthetic Nitrogen Use Efficiency in Field-grown Cotton[J]. Field Crops Research, 2015, 184: 39-49. doi: 10.1016/j.fcr.2015.09.005 [9] YAO H, ZHANG Y, YI X, et al. Cotton Responds to Different Plant Population Densities by Adjusting Specific Leaf Area to Optimize Canopy Photosynthetic Use Efficiency of Light and Nitrogen[J]. Field Crops Research, 2016, 188: 10-16. [10] 程建峰, 沈允钢. 作物高光效之管见[J]. 作物学报, 2010, 36(8): 1235-1247. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201008003.htm [11] NⅡNEMETS V. A Review of Light Interception in Plant Stands from Leaf to Canopy in Different Plant Functional Types and in Species with Varying Shade Tolerance[J]. Ecological Research, 2010, 25(4): 693-714. [12] ZHANG T, FENG P, LI Y, et al. Virescent-Albino Leaf1 Regulates Leaf Colour Development and Cell Division in Rice[J]. Journal of Experimental Botany, 2018, 69(20): 4791-4804. doi: 10.1093/jxb/ery250 [13] ADAMSON H Y, CHOW W S, ANDERSON J M, et al. Photosynthetic Acclimation of Tradescantia albiflora to Growth Irradiance: Morphological, Ultrastructural and Growth Responses[J]. Physiologia Plantarum, 1991, 82(3): 353-359. [14] LICHTENTHALER H K, WELLBURN A R. Deter Minations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents[J]. Analysis, 1983. 11(5): 591-592. [15] GREEN B R, DURNFORD D G. The chlorophyll-Carotenoid Proteins of Oxygenic Photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1): 685-714. [16] WEI L, CAO Y, LIANG X, et al. Identification of Two Genes Encoding the Major Light-Harvesting Chlorophyll a/b Proteins of Photosystem Ⅱ in Green Alga Dunaliella salina[J]. DNA Sequence, 2006, 17(5): 370-377. [17] 王珍琪. 环式电子传递在番茄响应低夜温胁迫中的光保护作用[D]. 沈阳: 沈阳农业大学, 2019. [18] 张耀文, 赵小光, 关周博, 等. 作物高光效种质筛选的研究进展[J]. 中国农学通报, 2019, 35(18): 1-11. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201918001.htm