-
稳定性是方程最重要的特性之一.泛函方程的稳定性问题起源于文献[1]对于群同态的研究.文献[2]首先证明了在Banach空间中近似可加映射的Ulam稳定性.随后,文献[3]通过考虑无界的柯西差,将文献[2]的结论推广到了线性映射,并得到如下结论:
令X,Y为Banach空间,若
$ f:\;X \longrightarrow Y $ 满足:对于给定的x,y∈X,存在ε>0和0<p<1,有且对于
$ \forall t \in {\mathbb{R}} $ ,f(tx)在X上是连续的.则存在唯一的线性映射$ T:\;X \longrightarrow Y $ ,使得自此,众多学者开始研究无界情形下泛函方程的Ulam稳定性.文献[4-5]研究了Jensen方程的Ulam稳定性.文献[6]研究了二次映射方程
的Ulam稳定性.文献[7]研究了Drygas方程
的Ulam稳定性.
值得注意的是,一些泛函方程Ulam稳定性的研究结果被推广到了集值的情形.文献[8]用不动点方法研究了Cauchy-Jensen型可加集值泛函方程、Jensen型可加二次集值泛函方程以及Jensen型三次集值泛函方程的Ulam稳定性.文献[9]讨论了n维三次集值泛函方程的Ulam稳定性.文献[10]定义了更一般化的可加集值泛函方程,并证明了其Ulam稳定性.
随着模糊分析学的发展,越来越多的学者从模糊分析学的角度去考虑Ulam稳定性.目前,该领域大多数的研究成果都是在模糊赋范空间中得到的(文献[11-13]).文献[14]讨论了抽象凸空间中广义模糊博弈的结构稳定性.而关于模糊数值映射方程的Ulam稳定性的研究结果还很少.
本文将在Banach空间中研究如下模糊数值映射二次型映射方程
和Drygas型方程
的Ulam稳定性.
文献[11]在模糊赋范空间中讨论了当s=1,f,g,h为单值奇映射时,方程(1)的Ulam稳定性.文献[15]研究了当g=h=f时,方程(1)的Ulam稳定性,其中f为单值映射.文献[7]利用不动点定理,在Banach空间中着重研究了当s=1,f=g=h=l时,方程(2)的Ulam稳定性,其中f表示单值映射.本文将在Banach中对更一般化的二次型映射方程和Drygas型方程的Ulam稳定性进行讨论,所得的结论在一定程度上推广了文献[7, 11, 15]中的相关结论.
在本文中,
$ \mathbb{N} $ 和$ \mathbb{R} $ 分别表示自然数集和实数集,$ \mathbb{R}$ +=(0,+∞),X和Y为Banach空间,Pkc(X)表示X中所有非空紧凸集,B⊆Y为Y中的线性子空间.
Ulam Stability of Some Fuzzy Number-Valued Functional Equations and Drygas Type Functional Equation
-
摘要: 方程的Ulam稳定性理论侧重于研究方程近似解附近存在精确解的条件.将Ulam稳定性的研究推广到了Banach空间中模糊数值映射方程.通过考虑无界的函数差,利用定义在模糊数空间中的度量,证明了更一般化的模糊数值映射二次型方程和Drygas型方程的Ulam稳定性,并得到其解的一些基本性质.所得的结论推广了已有文献中的相关结论.Abstract: The theory of the Ulam stability of equations focuses on conditions under which there exists an exact solution near approximate solutions for a given equation. The present paper investigates the Ulam stability of fuzzy number-valued functional equations in Banach spaces. By considering the unbounded differences between functions and by using the metric defined on a fuzzy number space, the Ulam stability of more general fuzzy number-valued quadratic type and Drygas type functional equations are proved. Moreover, some fundamental properties of the solutions are obtained. The obtained conclusions extend the relevant results in some existing papers.
-
[1] ULAM S M. Problems in Modern Mathematics[M]. New York: Wiley, 1960. [2] HYERS D H. On the Stability of the Linear Functional Equation[J]. Proceedings of the National Academy of Sciences, 1941, 27(4): 222-224. doi: 10.1073/pnas.27.4.222 [3] RASSIAS T M. On the Stability of the Linear Mapping in Banach Spaces[J]. Proceedings of the American Mathematical Society, 1978, 72(2): 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 [4] JUNG S M. Hyers-Ulam-Rassias Stability of Jensen's Equation and Its Application[J]. Proceedings of the American Mathematical Society, 1998, 126(11): 3137-3143. doi: 10.1090/S0002-9939-98-04680-2 [5] doi: https://www.sciencedirect.com/science/article/pii/S0022247X99965460 LEE Y H, JUN K W. A Generalization of the Hyers-Ulam-Rassias Stability of Jensen's Equation[J]. Journal of Mathematical Analysis & Applications, 1999, 246(2): 627-638. [6] doi: http://www.sciencedirect.com/science/article/pii/S0022247X05009777 FECHNER W. On the Hyers-Ulam Stability of Functional Equations Connected with Additive and Quadratic Mappings[J]. Journal of Mathematical Analysis & Applications, 2006, 322(2): 774-786. [7] doi: http://link.springer.com/article/10.1007/s00025-014-0418-y PISZCZEK M, SZCZAWI SKA J. Stability of the Drygas Functional Equation on Restricted Domain[J]. Results in Mathematics, 2015, 68(1): 1-24.[8] KENARY H A, REZAEI H, GHEISARI Y, et al. On the Stability of Set-Valued Functional Equations with the Fixed Point Alternative[J]. Fixed Point Theory and Applications, 2012, 2012(1): 81-97. doi: 10.1186/1687-1812-2012-81 [9] doi: http://www.sciencedirect.com/science/article/pii/S0893965914001499 CHU H Y, KIM A, YOO S K. On the Stability of the Generalized Cubic Set-Valued Functional Equation[J]. Applied Mathematics Letters, 2014, 37(6): 7-14. [10] SUN Y J, PARK C, CHO Y. Hyers-Ulam Stability of a Generalized Additive Set-Valued Functional Equation[J]. Journal of Inequalities and Applications, 2013, 2013(1): 101-106. doi: 10.1186/1029-242X-2013-101 [11] doi: https://www.sciencedirect.com/science/article/pii/S0377042710005662 MOHIUDDINEA S A, SEVLI H. Stability of Pexiderized Quadratic Functional Equation in Intuitionistic Fuzzy Normed Space[J]. Journal of Computational & Applied Mathematics, 2011, 235(8): 2137-2146. [12] doi: https://dl.acm.org/citation.cfm?id=2039759 GORDJI M E, KHODAEI H, KAMYAR M. Stability of Cauchy-Jensen Type Functional Lquation in Generalized Fuzzy Normed Spaces[J]. Computers & Mathematics with Applications, 2011, 62(8): 2950-2960. [13] doi: https://www.sciencedirect.com/science/article/pii/S0165011407003351 MIRMOSTAFAEE A K, MIRZAVAZIRI M, MOSLEHIAN M S. Fuzzy Stability of the Jensen Functional Equation[J]. Fuzzy Sets & Systems, 2008, 159(6): 730-738. [14] 夏顺友, 胥德平, 王常春.抽象凸空间中广义模糊博弈的结构稳定性[J].西南大学学报(自然科学版), 2013, 35(2): 81-84. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201302016&flag=1 [15] doi: http://www.ams.org/mathscinet-getitem?mr=2725339 SAADATI R, PARK C. Non-Archimedean L-Fuzzy Normed Spaces and Stability of Functional Equations[J]. Computers & Mathematics with Applications, 2010, 60: 2488-2496. [16] doi: https://www.sciencedirect.com/science/article/pii/016501149190034N BAN J. Ergodic Theorems for Random Compact Sets and Fuzzy Variables in Banach Spaces[J]. Fuzzy Sets & Systems, 1991, 44(1): 71-82.
计量
- 文章访问数: 654
- HTML全文浏览数: 402
- PDF下载数: 16
- 施引文献: 0