-
小麦是我国三大粮食作物之一[1],氮、磷、钾肥的施用对提高小麦产量起重要作用.施用氮肥显著提高了冬小麦的籽粒产量及成熟期地上部氮累积量,过量施用氮肥对冬小麦增产影响不显著[2].长期大量调查结果显示,渭北旱塬有超过60%的小麦种植户存在过量施氮的现象[3].小麦对氮素吸收累积及其向籽粒的转移,影响到小麦的产量和品质.增施适量氮肥能提高小麦生育后期对氮素的吸收,使花期前贮存养分转移量和花期后氮素同化能力同步提高,进而促进小麦增产[4-5],较高的氮素转移效率能提高籽粒产量[6].随着磷肥投入量增加,冬小麦氮素累积量呈现先上升后下降的动态变化[7-8].适量的氮、钾肥能提高小麦产量及品质,促进小麦植株对氮、磷、钾养分的吸收[9].
地表覆盖是调控土壤水分、养分状况、提高作物产量的有效措施之一.在冬小麦生育期覆盖地膜能增产12%~21%[10-11]. Iqbal等[12]通过在冬小麦生育期覆盖地膜使地上部氮累积量增加10%. Devkota等[13]证实秸秆覆盖能使小麦产量增加5%,在氮肥用量为325 kg/hm2时,玉米秸秆还田能使下季小麦吸氮量增加7%[14].综上所述,不同地表覆盖方式调控作物产量、养分吸收量的效果不同,且同一地表覆盖的作物产量和养分利用率也因地而异.
以上研究均是在不同肥料用量处理或者不同覆盖处理条件下获得,而有关减氮结合不同覆盖处理下冬小麦养分累积和转移规律研究鲜有报道.如何根据氮、磷、钾累积转移规律确定氮肥用量及地表覆盖方式,在实现冬小麦高产的基础上同时减少氮肥用量是目前亟待解决的问题.因此本试验设置减施氮肥结合不同地表覆盖处理,通过对冬小麦氮、磷、钾元素的累积和转移规律展开研究,以期为旱地冬小麦高产高效栽培技术提供理论依据.
Study on Nutrient Accumulation and Translocation of Winter Wheat Under Reduced Nitrogen Application Combined with Mulching
-
摘要: 研究减施氮肥结合不同覆盖措施下旱地冬小麦养分累积和转移规律,以期为西北旱地冬小麦优质高效生产提供理论依据和实践经验.于2012年至2017年进行大田试验,以不施氮肥为对照,设置农户模式(施氮量为195 kg/hm2)、农户减氮(150 kg/hm2),在施用氮肥150kg/hm2的基础上设置垄覆沟播、全膜穴播、秸秆覆盖3种地表覆盖处理,共6个处理,测定了5季冬小麦籽粒产量和生物量.2016年至2017年测定各处理的氮磷累积量、转移量、转移率、转移氮磷对籽粒的贡献率,钾累积量、转移量、花后钾损失量及籽粒钾占转移钾比例.据2012-2017年5季产量和生物量平均值来看,农户减氮较农户模式籽粒产量及生物量有下降趋势,但未达到显著水平,在减氮基础上垄覆沟播有增产趋势,全膜穴播、秸秆覆盖较农户减氮分别增产8.4%,5.0%,垄覆沟播、全膜穴播、秸秆覆盖处理的生物量较农户减氮分别增加7.1%,15.5%,10.0%.据2016-2017年数据显示,较农户模式,农户减氮处理氮磷的累积量、转移量、转移率、转移氮磷贡献率、钾素累积量和转移量,花后钾损失量以及籽粒钾占转移钾比例均无显著差异.较农户减氮处理,3种覆盖处理下氮素累积量、转移量、转移率及转移氮贡献率无显著差异,垄覆沟播与全膜穴播处理促进了磷、钾的累积和转移,但对磷转移率及转移磷贡献率无明显影响,钾的花后损失量较高,籽粒钾占转移钾的比例有下降趋势,秸秆覆盖处理下磷钾累积量显著增加,磷的转移量、转移率及转移贡献率有下降趋势,钾的转移量和损失量均较低,但籽粒钾占转移钾的比例较高.150 kg/hm2氮肥用量基本满足旱地冬小麦生长需求,可见减施氮肥可行.全膜穴播及秸秆覆盖处理下产量有增加趋势,垄覆沟播与全膜穴播处理促进磷钾累积及转移,秸秆覆盖提高了籽粒钾占转移钾比例,因此地表覆盖很有必要.Abstract:ObjectiveIn order to provide a theoretical basis and practical experience for high-quality and efficient production of dryland winter wheat in northwest China, nutrient accumulation and translocation in winter wheat-cultivated dryland under the combined measures of reduced nitrogen application and mulching were investigated.MethodsField experiments were carried out from 2012 to 2017, with no nitrogen fertilizer as the control, and two nitrogen rates were designed:195 kg/ha (practiced by the local farmer households) and 150 kg/ha (reduced rate of nitrogen application). Based on the 150 N kg/ha treatment, 3 mulching treatments were made:ridge mulching-furrow sowing, whole plastic film mulching and straw mulching. Grain and biomass yield of the 6 treatments in the 5 seasons were recorded. In the 2016-2017 season, the amount of nitrogen and phosphorus accumulation and translocation and their translocation rates, the contribution of translocated nitrogen and phosphorus to grain yield in different treatments were measured. The amount of potassium loss after anthesis and the ratio of grain potassium to translocated potassium were measured.ResultsAccording to the average yield and biomass in the five seasons from 2012 to 2017, the grain yield and biomass of reduced nitrogen treatment tended to decrease, though non-significantly. On the basis of nitrogen reduction, the ridge mulching-furrow sowing mode tended to increase yield, by 8.4% and 5.0% in the treatments of whole film mulching and straw mulching, respectively. The biomass of ridge mulching-furrow sowing, whole film mulching and straw mulching increased by 7.1%, 15.5% and 10.0%. The data from 2016 to 2017 showed that no significant differences existed between the 195 and 150 N kg/ha treatments in their nitrogen and phosphorus accumulation, translocation, translocation rate and contribution rate of translocated nitrogen and phosphorus, potassium accumulation and translocation amount, potassium loss after anthesis and the ratio of grain potassium to translocated potassium. Compared with the treatment of the reduction of nitrogen of farmers, the three mulching treatments had no obvious effect on nitrogen accumulation, translocation amount andtranslocation rate. Ridge mulching-furrow sowing and whole film mulching promoted the accumulation and translocation of phosphorus and potassium, but had no significant influence on the rate of phosphorus translocation and contribution rate of translocated phosphorus. The loss of potassium was rather high, and the proportion of potassium in grain tended to decrease. Accumulation of phosphorus and potassium in straw mulching increased significantly, phosphorus translocation amount, translocation rate and the contribution rate of translocated phosphorus decreased. The amounts of potassium translocation and loss were low, and the proportion of grain potassium to translocated potassium was relatively high. Straw mulching significantly increased the accumulation of phosphorus and potassium and tended to decrease the translocation, translocation rate and contribution rate of phosphorus. The amounts of potassium translocation and loss were comparatively small, but the proportion of grain potassium in translocated potassium were fairly high.ConclusionA nitrogen rate of 150 kg/ha can basically meet the needs for winter wheat growth and so it is feasible to reduce nitrogen application. The treatments of plastic film mulching and straw mulching generally increased yield, ridge mulching-furrow sowing and plastic film mulching promoted the accumulation and translocation of phosphorus and potassium, and straw mulching raised the proportion of grain potassium in the translocated potassium. Therefore, mulching is a necessary and desirable agronomic management measure.
-
Key words:
- dryland winter wheat /
- yield /
- amount of accumulation /
- amount of translocation /
- surface mulching .
表 1 2012-2017年冬小麦产量生物量
处理 2012-2013年 2013-2014年 2014-2015年 2015-2016年 2016-2017年 平均值 籽粒/(kg·hm-2) 无氮对照 2 850 c 5 224 c 3 292 c 2 295 c 2 275c 3 187b 农户模式 4 300 a 6 874 b 7 344 b 7 115 a 4 705b 6 068a 农户减氮 3 775 b 7 049 b 7 265 b 6 763 ab 4 887b 5 948a 垄覆沟播 4 311 a 6 774 b 7 048 b 6 405 ab 5 157ab 5 939a 全膜穴播 4 475 a 7 599 a 8 366 a 6 115 b 5 681a 6 447a 秸秆覆盖 4 625 a 6 786 b 7 916 a 6 388 ab 5 513a 6 246a 生物量/(kg·hm-2) 无氮对照 5 925 c 11 551 c 8 823 d 6 248 c 6 458c 7 980c 农户模式 8 850 ab 16 626 b 17 368 c 16 358 a 11 292b 14 910ab 农户减氮 7 950 b 16 601 b 17 183 c 15 278 ab 11 625b 13 727b 垄覆沟播 9 400 a 17 058 b 16 557 c 15 485 ab 15 008a 14 702ab 全膜穴播 9 400 a 19 401 a 21 060 a 15 093 b 14 328a 15 856a 秸秆覆盖 9 450 a 17 287 b 19 385 b 15 065 b 14 311a 15 100ab 注:同列数值后不同小写字母表示处理间差异在5%水平有统计学意义,下同. 表 2 冬小麦不同生育期地上部氮素累积量
kg/hm2 处理 苗期 拔节 扬花 灌浆 成熟 无氮对照 3.5bc 26.1c 39.0d 45.0b 40.4c 农户模式 3.8abc 128.8ab 180.8a 206.4a 156.9a 农户减氮 3.5bc 133.9ab 151.9bc 178.1a 139.6ab 垄覆沟播 3.3c 96.7b 173.4ab 186.4a 139.1ab 全膜穴播 4.8a 151.2a 152.7bc 186.9a 128.9b 秸秆覆盖 4.6ab 139.1a 141.7c 204.3a 141.2ab 表 3 减氮结合覆盖下冬小麦氮转移量、转移率和转移氮对籽粒贡献率
处理 氮转移量/(kg·hm-2) 氮转移率/% 转移氮贡献率/% 无氮对照 28.4c 72.2b 94.6b 农户模式 148.5a 82.0a 120.5ab 农户减氮 124.9ab 82.1a 112.7ab 垄覆沟播 139.5a 80.2a 135.5a 全膜穴播 122.6ab 79.6ab 129.0ab 秸秆覆盖 110.4b 77.4ab 100.1ab 表 4 减氮结合覆盖下冬小麦各生育期地上部磷累积量
kg/hm2 处理 苗期 拔节 扬花 灌浆 成熟 无氮对照 0.33c 2.4c 11.5e 12.8c 10.2d 农户模式 0.36bc 6.2b 22.7bc 25.4ab 19.0bc 农户减氮 0.34bc 6.5b 20.3cd 23.3b 18.1c 垄覆沟播 0.32c 5.8b 28.2a 25.2ab 20.9bc 全膜穴播 0.49a 10.5a 25.1ab 30.4a 21.9ab 秸秆覆盖 0.45ab 6.2b 19.2d 28.1ab 24.2a 表 5 减氮结合覆盖下冬小麦磷转移量、转移率和转移磷对籽粒贡献率
处理 磷转移量/(kg·hm-2) 磷转移率/% 转移磷贡献率/% 无氮对照 9.9e 85.3b 115.7b 农户模式 20.3bc 89.3a 124.1ab 农户减氮 18.1cd 89.1a 115.3b 垄覆沟播 24.8a 87.9ab 141.3a 全膜穴播 22.6ab 89.9a 119.1b 秸秆覆盖 16.3d 85.0b 76.6c 表 6 减氮结合覆盖下冬小麦各生育期地上部钾累积量
kg/hm2 处理 苗期 拔节 扬花 灌浆 成熟 无氮对照 2.1b 32.8c 72.6c 72.4c 49.8d 农户模式 2.6b 96.2b 149.8b 142.0b 81.7c 农户减氮 2.4b 93.7b 137.9b 134.4b 81.1c 垄覆沟播 2.4b 90.1b 184.8a 205.5a 102.5b 全膜穴播 3.7a 155.4a 184.5a 183.0a 106.7b 秸秆覆盖 4.2a 133.5a 176.5a 197.0a 132.1a 表 7 减氮结合覆盖下冬小麦钾转移量、花后损失量和籽粒钾占转移钾比例
处理 钾转移量/(kg·hm-2) 花后钾损失量/(kg·hm-2) 籽粒钾占转移钾比例/% 无氮对照 33.4c 22.8d 32.7ab 农户模式 88.2ab 68.1ab 24.4bc 农户减氮 76.4b 56.8bc 27.9abc 垄覆沟播 104.7a 82.3a 22.3c 全膜穴播 102.7a 77.8ab 25.5bc 秸秆覆盖 68.5b 44.4cd 36.7a [1] HIREL B, ANDRIEU B, VALADIER M H, et al. Physiology of Maize Ⅱ:Identification of Physiological Markers Representative of the Nitrogen Status of Maize (Zea mays) Leaves During Grain Filling[J]. Physiologia Plantarum, 2005, 124(2):178-188. doi: 10.1111/ppl.2005.124.issue-2 [2] 同延安, 赵营, 赵护兵, 等.施氮量对冬小麦氮素吸收、转运及产量的影响[J].植物营养与肥料学报, 2007, 13(1):64-69. doi: 10.3321/j.issn:1008-505X.2007.01.011 [3] 赵护兵, 王朝辉, 高亚军, 等.西北典型区域旱地冬小麦农户施肥调查分析[J].植物营养与肥料学报, 2013, 19(4):840-848. doi: http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201304009 [4] SOUZA E J, Martin J M, GUTTIER M J, et al. Influence of Genotype, Environment, and Nitrogen Management on Spring Wheat Quality[J]. Crop Science, 2004, 44(2):425-432. doi: 10.2135/cropsci2004.4250 [5] doi: https://www.sciencedirect.com/science/article/pii/S037842900300248X ABAD A, LLOVERAS J, MICHELENA A. Nitrogen Fertilization and Foliar Urea Effects on Durum Wheat Yield and Quality and on Residual Soil Nitrate in Irrigated Mediterranean Conditions[J]. Field Crops Research, 2004, 87(2/3):257-269. [6] WANG H, MCCAIG T N, DEPAUW R M, et al. Physiological Characteristics of Recent Canada Western Red Spring Wheat Cultivars:Components of Grain Nitrogen Yield[J]. Canadian Journal of Plant Science, 2003, 83(4):699-707. doi: 10.4141/P02-166 [7] 陈磊, 郝明德, 戚龙海.长期施肥对黄土旱塬区土壤-植物系统中氮、磷养分的影响[J].植物营养与肥料学报, 2007, 13(6):1006-1012. doi: 10.3321/j.issn:1008-505x.2007.06.004 [8] 张爱平, 刘汝亮, 李友宏, 等.施用磷肥对春小麦产量与吸氮特性及土体中硝态氮累积的影响[J].干旱地区农业研究, 2009, 27(5):30-34. doi: http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200905006 [9] 何萍, 李玉影, 金继运.氮钾营养对面包强筋小麦产量和品质的影响[J].植物营养与肥料学报, 2002, 8(4):395-398. doi: 10.3321/j.issn:1008-505X.2002.04.003 [10] CHAKRABORTY D, NAGARAJAN S, AGGARWAL P, et al. Effect of Mulching on Soil and Plant Water Status, and the Growth and Yield of Wheat (Triticum Aestivum, L.) in a Semi-Arid Environment[J]. Agricultural Water Management, 2008, 95(12):1323-1334. doi: 10.1016/j.agwat.2008.06.001 [11] GAO Y J, LI Y, ZHANG J C, et al. Effects of Mulch, N Fertilizer, and Plant Density on Wheat Yield, Wheat Nitrogen Uptake, and Residual Soil Nitrate in a Dryland Area of China[J]. Nutrient Cycling in Agroecosystems, 2009, 85(2):109-121. doi: 10.1007/s10705-009-9252-0 [12] doi: https://www.sciencedirect.com/science/article/pii/S0167198704000522 IQBAL M M, AKHTER J, MOHAMMAD W, et al. Effect of Tillage and Fertilizer Levels on Wheat Yield, Nitrogen Uptake and Their Correlation with Carbon Isotope Discrimination under Rainfed Conditions in North-West Pakistan[J]. Soil and Tillage Research, 2005, 80(1):47-57. [13] NAAB J B, MAHAMA G Y, KOO J, et al. Nitrogen and Phosphorus Fertilization with Crop Residue Retention Enhances Crop Productivity, Soil Organic Carbon, and Total Soil Nitrogen Concentrations in Sandy-loam Coils in Ghana[J]. Nutrient Cycling in Agroecosystems, 2015, 102(1):33-43. doi: 10.1007/s10705-015-9675-8 [14] 黄婷苗, 郑险峰, 侯仰毅, 等.秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响[J].植物营养与肥料学报, 2015, 21(4):853-863. doi: http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201504004 [15] SUN H, SHEN Y, YU Q, et al. Effect of Precipitation Change on Water Balance and WUE of the Winter Wheat-Summer Maize Rotation in the North China Plain.[J]. Agricultural Water Management, 2010, 97(8):1139-1145. doi: 10.1016/j.agwat.2009.06.004 [16] ARDUINI I, MASONI A, ERCOLI L, et al. Grain Yield, and Dry Matter and Nitrogen Accumulation and Remobilization in Durum Wheat as Affected by Variety and Seeding Rate[J]. European Journal of Agronomy, 2006, 25(4):309-318. doi: 10.1016/j.eja.2006.06.009 [17] DORDAS C. Dry Matter, Nitrogen and Phosphorus Accumulation, Partitioning and Remobilization as Affected by N and P Fertilization and Source-Sink Relations[J]. European Journal of Agronomy, 2009, 30(2):129-139. doi: 10.1016/j.eja.2008.09.001 [18] KASIRAJAN S, NGOUAJIO M. Polyethylene and Biodegradable Mulches for Agricultural Applications:A Review[J]. Agronomy for Sustainable Development, 2012, 32(2):501-529. doi: 10.1007/s13593-011-0068-3 [19] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=397de79f199f2daef1b63a9f7bdfec1d MO X, LIU S, LIN Z, et al. Prediction of Crop Yield, Water Consumption and Water Use Efficiency with a SVAT-Crop Growth Model Using Remotely Sensed Data on the North China Plain[J]. Ecological Modelling, 2005, 183(2/3):301-322. [20] REHMAN S, KHALIL S K, REHMAN A, et al. Micro-Watershed Enhances Rain Water Use Efficiency, Phenology and Productivity of Wheat under Rainfed Condition[J]. Soil and Tillage Research, 2009, 104(1):82-87. doi: 10.1016/j.still.2008.12.013 [21] LI F M, GUO A H, WEI H. Effects of Clear Plastic Film Mulch on Yield of Spring Wheat[J]. Field Crops Research, 1999, 63(1):79-86. doi: 10.1016/S0378-4290(99)00027-1 [22] doi: https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f20000712048 LIMONORTEGA A, SAYRE K D, FRANCIS C A. Wheat and Maize Yields in Response to Straw Management and Nitrogen under a Bed Planting System[J]. Semigroup Forum, 2000, 92(2):295-302. [23] NOVOA R, LOOMIS R S. Nitrogen and Plant Production[J]. Plant and Soil, 1981, 58(1-3):177-204. doi: 10.1007/BF02180053 [24] 党廷辉, 高长青.渭北旱塬影响小麦产量的关键降水因子分析[J].水土保持研究, 2003, 10(1):9-11. doi: 10.3969/j.issn.1005-3409.2003.01.003 [25] 伍维模, 李世清.施氮对不同基因型冬小麦氮素吸收及干物质分配和产量的影响[J].塔里木大学学报, 2006, 18(2):5-11. doi: 10.3969/j.issn.1009-0568.2006.02.002 [26] PAPAKOSTA D K, GAGIANAS A A. Nitrogen and Dry Matter Accumulation, Remobilization, and Losses for Mediterranean Wheat during Grain Filling[J]. Agronomy Journal, 1991, 83(5):864-870. doi: 10.2134/agronj1991.00021962008300050018x [27] 李华, 王朝辉, 李生秀, 等.地表覆盖和施氮对冬小麦干物质和氮素积累与转移的影响[J].植物营养与肥料学报, 2008, 14(6):1027-1034. doi: 10.3321/j.issn:1008-505X.2008.06.001 [28] MASONI A, ERCOLI L, MARIOTTI M, et al. Post-Anthesis Accumulation and Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Soil Type[J]. European Journal of Agronomy, 2007, 26(3):179-186. doi: 10.1016/j.eja.2006.09.006 [29] 周玲, 赵护兵, 王朝辉, 等.不同产量水平旱地冬小麦品种氮磷钾养分累积与转移的差异分析[J].中国生态农业学报, 2011, 19(2):318-325. doi: http://d.old.wanfangdata.com.cn/Periodical/stnyyj201102015 [30] 王春阳, 周建斌, 郑险峰, 等.不同栽培模式及施氮量对半旱地冬小麦氮素累积及分配的影响[J].西北农林科技大学学报(自然科学版), 2008, 36(1):101-108. doi: 10.3321/j.issn:1671-9387.2008.01.018 [31] BARBOTTIN A, LECOMTE C, BOUCHARD C, et al. Nitrogen Remobilization during Grain Filling in Wheat[J]. Crop Science, 2005, 45(3):1141-1150. doi: 10.2135/cropsci2003.0361 [32] 何刚, 王朝辉, 李富翠, 等.地表覆盖对旱地小麦氮磷钾需求及生理效率的影响[J].中国农业科学, 2016, 49(9):1657-1671. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnykx201609003 表( 7)计量
- 文章访问数: 690
- HTML全文浏览数: 335
- PDF下载数: 10
- 施引文献: 0
减氮结合覆盖下冬小麦养分累积及转移规律研究
- 收稿日期: 2017-11-30
摘要: 研究减施氮肥结合不同覆盖措施下旱地冬小麦养分累积和转移规律,以期为西北旱地冬小麦优质高效生产提供理论依据和实践经验.于2012年至2017年进行大田试验,以不施氮肥为对照,设置农户模式(施氮量为195 kg/hm2)、农户减氮(150 kg/hm2),在施用氮肥150kg/hm2的基础上设置垄覆沟播、全膜穴播、秸秆覆盖3种地表覆盖处理,共6个处理,测定了5季冬小麦籽粒产量和生物量.2016年至2017年测定各处理的氮磷累积量、转移量、转移率、转移氮磷对籽粒的贡献率,钾累积量、转移量、花后钾损失量及籽粒钾占转移钾比例.据2012-2017年5季产量和生物量平均值来看,农户减氮较农户模式籽粒产量及生物量有下降趋势,但未达到显著水平,在减氮基础上垄覆沟播有增产趋势,全膜穴播、秸秆覆盖较农户减氮分别增产8.4%,5.0%,垄覆沟播、全膜穴播、秸秆覆盖处理的生物量较农户减氮分别增加7.1%,15.5%,10.0%.据2016-2017年数据显示,较农户模式,农户减氮处理氮磷的累积量、转移量、转移率、转移氮磷贡献率、钾素累积量和转移量,花后钾损失量以及籽粒钾占转移钾比例均无显著差异.较农户减氮处理,3种覆盖处理下氮素累积量、转移量、转移率及转移氮贡献率无显著差异,垄覆沟播与全膜穴播处理促进了磷、钾的累积和转移,但对磷转移率及转移磷贡献率无明显影响,钾的花后损失量较高,籽粒钾占转移钾的比例有下降趋势,秸秆覆盖处理下磷钾累积量显著增加,磷的转移量、转移率及转移贡献率有下降趋势,钾的转移量和损失量均较低,但籽粒钾占转移钾的比例较高.150 kg/hm2氮肥用量基本满足旱地冬小麦生长需求,可见减施氮肥可行.全膜穴播及秸秆覆盖处理下产量有增加趋势,垄覆沟播与全膜穴播处理促进磷钾累积及转移,秸秆覆盖提高了籽粒钾占转移钾比例,因此地表覆盖很有必要.
English Abstract
Study on Nutrient Accumulation and Translocation of Winter Wheat Under Reduced Nitrogen Application Combined with Mulching
- Received Date: 2017-11-30
Abstract: