-
香樟(Cinamomum camphora (L) Prest)为樟科、樟属亚热带常绿阔叶乔木[1].由于具有生长快、枝叶茂密、常绿且冠形美观,以及能避臭、驱虫、吸毒气、隔噪音等特点,香樟被广泛应用于城市园林绿化[2-3].随着香樟种植面积的扩大,香樟病害问题也越来越引起人们的重视.其中,香樟炭疽病是由盘长孢状刺盘孢(Colletotrichum gloeosporioides)引起的主要真菌病害[4],该病害在全国各地发病率极高,发病叶片呈现褐色病斑,且常伴随不规则形状的黑色小粒点[4-5].此外,炭疽病菌也能使香樟茎干枯死,影响其正常生长,给绿化建设带来极大的损失.目前,生产上防控香樟炭疽病以化学农药防治为主,另辅以合理修剪,树粮间作等农艺防控手段[6].然而,农艺法耗时费力,且防效甚微;化学法主要是通过多菌灵、红日强力杀菌剂、碘加酮杀菌剂等对香樟进行喷雾防治[7],尽管此法短期内防治效果较好,但易导致农药残留、病原菌产生耐药性、造成环境污染等一系列弊端.近年来,随着人们对环境问题的日益重视,使用安全有效的微生物菌剂[8-10]防治炭疽病已逐步成为一种极具潜力的生物防控手段,而利用此法进行香樟炭疽病防治的报道整体较少.因此,寻获能够有效抑制香樟炭疽病菌生长的微生物菌种资源对于绿色防控香樟炭疽病具有重要意义.
土壤微生物(soil microorganism)是生活在土壤中的细菌、真菌、放线菌及藻类等的总称[11].土壤有益微生物种类丰富,因其具有促进宿主植物生长[12]、增加宿主植物抗病虫害能力[13-14]等功能,被广泛应用于植物病虫害生物防治[15-17].近年来,有关利用土壤有益微生物防治植物炭疽菌的研究报道表明:土壤中存在大量能够抑制植物病原菌生长的拮抗菌群,这些菌群是开发植物病原微生物生防制剂的重要菌种来源[18-20].张晖等从香蕉根际土壤中分离获得几株对荔枝炭疽病菌与香蕉炭疽病菌均具明显抑菌作用的芽孢杆菌分离株[18];喇文军等从农田土壤分离筛选出的枯草芽孢杆菌C-D6对香蕉炭疽病原菌拮抗效果显著[19];祝福元等从土壤中分离获得的两株芽孢杆菌菌株19E2,13A1对菜心炭疽病菌具有强烈抑制作用[20].然而,有关利用土壤有益微生物防治香樟炭疽病的研究报道较少.
本研究对一株来自根际土壤的香樟炭疽病菌拮抗细菌进行菌种鉴定,优化该菌株产生抑菌活性物质的发酵条件,并测试其抑菌谱,以期为利用土壤有益微生物进行香樟炭疽病的防治奠定基础.
Identification of an Antagonistic Bacterium Against Camphor Anthracnose and Optimization of Fermentation Conditions for It
-
摘要: 为寻获香樟炭疽病生物防治的优良菌种资源,通过形态学观察、生理生化检测和基于16S rDNA系统发育分析,对一株香樟炭疽病拮抗菌SWUJ1进行了菌种鉴定;通过单因素试验优化该菌株产生抑菌活性物质的发酵条件,并釆用抑菌圈法检测其发酵液抑菌活性;进而利用菌丝生长速率法测定该菌株的抑菌谱.菌种鉴定结果表明SWUJ1为革兰氏阳性杆状菌株、产芽孢,在LB固体培养基上菌落呈圆形、边缘整齐光滑、湿润、呈乳白色黏稠状,过氧化氢酶呈阳性且具运动性;基于16S rDNA序列的系统发育分析结果显示该菌株与登录号为NR116240的甲基营养型芽孢杆菌(Bacillus methylotrophicus)的亲缘关系最近,且处于系统发育树的同一分枝,故将SWUJ1菌株鉴定为甲基营养型芽孢杆菌,命名为B.methylotrophicus SWUJ1;发酵条件优化结果表明该菌株产抑菌活性物质的最佳氮源为酵母粉,碳源为乳糖,无机盐离子为MgSO4,初始pH值为5.0,培养温度为25℃,接种量为1.0%,发酵时间为96 h,优化后拮抗细菌B.methylotrophicus SWUJ1等量发酵上清液对香樟炭疽病菌的拮抗作用显著提高,且其发酵上清液对核盘菌(Sclerotinia sclerotiorum)及旋孢腔菌(Cochiobolus sativus)等10余种常见植物病原菌具不同程度的抑制作用.研究结果表明,B.methylotrophicus SWUJ1菌株可作为开发香樟炭疽病生防制剂的候选菌株.Abstract: In order to prepare strain resources for the biological control of camphor anthracnose, an antagonistic bacterium SWUJ1 against camphor anthracnose was identified by morphological features, physiological and biochemical characteristics and 16S rDNA phylogenetic analysis. Further, the fermentation conditions and medium composition were optimized through a single-factor experiment, and the antimicrobial activity of the cell-free fermentation supernatant was determined with the inhibition zone method. Moreover, the antimicrobial spectrum of the cell-free fermentation supernatant was assayed with the method of mycelia growth rate. The results of identification showed that SWUJ1 was Gram-positive, rod-shaped and able to form spores. The colony of SWUJ1 was round, neat, smooth, moist, milky white and viscous on the LB solid medium. Its catalase and motility were positive. Based on 16S rDNA phylogenetic analysis, SWUJ1 was close to Bacillus methylotrophicus and in the same minimal clade with B.methylotrophicus (accession number:NR116240). Therefore, strain SWUJ1 was identified as a strain of B. methylotrophicus, and named B. methylotrophicus SWUJ1. The results of fermentation optimization showed that optimal nitrogen source for the antibacterial substances of strain SWUJ1 was yeast powder, the carbon source was lactose, and the inorganic ion was MgSO4 and the optimal culture conditions were inoculation size of 1.0% for 94 h at 25℃ with an initial pH of 5.0. Equal fermentation supernatant of the antagonistic bacterium B. methylotrophicus SWUJ1 significantly improved its antagonistic activity against camphor anthracnose via fermentation optimization and showed antagonistic activity in different degrees against more than 10 plant pathogens such as Sclerotinia sclerotiorum and Cochiobolus sativus. The above results indicated that B. methylotrophicus SWUJ1 could be a candidate strain for future biological control of camphor anthracnose.
-
Key words:
- camphor anthracnose /
- antagonistic bacterium /
- identification /
- fermentation optimization .
-
表 1 SWUJ1菌株的生理生化特征
测试项目 结果 葡萄糖产气 - 蛋白胨水 - 硝酸盐还原 + 淀粉 + 过氧化氢酶 + 甘露糖 - 木糖 - 明胶 + 西蒙氏枸橼盐酸 + 葡萄糖磷酸盐 - 半固体琼脂 + 阿拉伯糖 - 注:“+”表示阳性;“-”表示阴性. 表 2 SWUJ1菌株发酵滤液对多种病原真菌的抑制作用
病原菌 抑菌率/% Pythium ultimum SWU3 a 12.83±0.09 Fusarium oxysporum SWU27 a 17.82±0.29 Sclerotinia sclerotiorum PZ-2 100.00±0.00 Botrytis cinerea SWU5 75.17±0.05 Ceratocystis ulmi SWU10 75.99±0.04 Rhizoctonia solani SWU22 13.52±0.08 Alternaria alternata SWU26 12.74±0.15 Cochiobolus sativus SWU25 94.89±0.05 Nectria haematococca SXZW6 31.13±0.07 Scleromitrula shiraiana SXSG-5b 100.00±0.00 Ilyonectria radicicola SXZW10 b 69.56±0.33 Phoma exigua GXH1 b 64.22±0.59 Colletrichum lagenarium SWU8 b 79.86±0.07 注:根据病原菌生长速度的不同,大多数病原菌在接种3 d时测量抑菌率(a.接种后1 d测量;b.接种后8 d测量). -
[1] 王丽贞.芳香樟炭疽病的研究[D].福州: 福建农林大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10389-1011164886.htm [2] 许东新, 杨学军, 唐东芹, 等.上海外环林带森林结构的优化模式[J].东北林业大学学报, 2002, 30(3):118-122. doi: 10.3969/j.issn.1000-5382.2002.03.033 [3] 秦霞.香樟的功用及主要栽培技术[J].中国林副特产, 2001(3):18. doi: http://d.old.wanfangdata.com.cn/Periodical/zglftc200103019 [4] 葛建明, 张伟, 管丽琴, 等.香樟炭疽病菌生物学特性及其植物源农药的筛选[J].上海交通大学学报(农业科学版), 2005, 23(4):401-405, 442. doi: 10.3969/j.issn.1671-9964.2005.04.015 [5] 何思瑶, 吴道军, 任慧爽, 等. 5种杀菌剂对香樟炭疽病菌的室内药效试验[J].绿色科技, 2017(13):21-23. doi: http://d.old.wanfangdata.com.cn/Periodical/lsdsj201713010 [6] 彭琼, 卢宗荣, 何传统, 等.恩施市城区樟树主要病虫害的研究[J].湖北林业科技, 2014, 43(2):35-37. doi: 10.3969/j.issn.1004-3020.2014.02.011 [7] 杨彦辉, 龙珠平.樟树炭疽病防治措施初探[J].湖南林业科技, 2007, 34(5):81-82. doi: 10.3969/j.issn.1003-5710.2007.05.031 [8] 单体江, 冯皓, 艾彩霞, 等.樟树病害及其防治研究综述[J].湖南林业科技, 2014, 41(4):75-77, 85. doi: 10.3969/j.issn.1003-5710.2014.04.018 [9] 任建国, 黄思良, 晏卫红, 等.拮抗微生物防治芒果炭疽病研究[J].西南农业学报, 2002, 15(4):82-85. doi: 10.3969/j.issn.1001-4829.2002.04.020 [10] 唐玉清, 殷允广.微生物功能菌生物防治葡萄炭疽病试验报告[J].新疆农业科技, 2015(3):41-42. doi: 10.3969/j.issn.1007-3574.2015.03.025 [11] doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594342/ SANTHANAM R, BALDWIN I T, GROTEN K. In Wild Tobacco, Nicotiana Attenuata, Variation Among Bacterial Communities of Isogenic Plants is Mainly Shaped by the Local Soil Microbiota Independently of the Plants' Capacity to Produce Jasmonic Acid[J]. Communicative & Integrative Biology, 2015, 8(2):e1017160-1-e1017160-5. [12] PANKE-BUISSE K, POOLE A C, GOODRICH J K, et al. Selection on Soil Microbiomes Reveals Reproducible Impacts on Plant Function[J]. The ISME Journal, 2015, 9(4):980-989. doi: 10.1038/ismej.2014.196 [13] SANGUIN H, SARNIGUET A, GAZENGEL K, et al. Rhizosphere Bacterial Communities Associated with Disease Suppressiveness Stages of Take-All Decline in Wheat Monoculture[J]. New Phytologist, 2009, 184(3):694-707. doi: 10.1111/nph.2009.184.issue-3 [14] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, Variation, and Assembly of the Root-Associated Microbiomes of Rice[J]. Proceedings of the National Academy of Sciences, 2015, 112(8):E911-E920. doi: 10.1073/pnas.1414592112 [15] MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria[J]. Science, 2011, 332(6033):1097-1100. doi: 10.1126/science.1203980 [16] SANTOYO G, DEL CARMEN OROZCO-MOSQUEDA M, GOVINDAPPA M. Mechanisms of Biocontrol and Plant Growth-Promoting Activity in Soil Bacterial Species of Bacillus and Pseudomonas:A Review[J]. Biocontrol Science and Technology, 2012, 22(8):855-872. doi: 10.1080/09583157.2012.694413 [17] YANG H W, LI J, XIAO Y H, et al. An Integrated Insight into the Relationship Between Soil Microbial Community and Tobacco Bacterial Wilt Disease[J]. Frontiers in Microbiology, 2017, 8:2179-2190. doi: 10.3389/fmicb.2017.02179 [18] 张晖, 宋圆圆, 吕顺, 等.香蕉根际促生菌的抑菌活性及对作物生长的促进作用[J].华南农业大学学报, 2015, 36(3):65-70. doi: http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201503012 [19] 喇文军, 贾书娟, 吴小丽, 等.抑制辣椒炭疽菌的生防芽孢杆菌菌株筛选和鉴定[J].深圳职业技术学院学报, 2016, 15(3):48-52. doi: http://d.old.wanfangdata.com.cn/Periodical/szzyjsxyxb201603010 [20] 祝福元, 吴小丽, 吕风青, 等.菜心炭疽病菌拮抗细菌的筛选及鉴定[J].微生物学通报, 2009, 36(9):1350-1355. doi: http://d.old.wanfangdata.com.cn/Periodical/wswxtb200909014 [21] 孙卓, 杨利民.人参灰霉病拮抗细菌的筛选及鉴定[J].植物保护学报, 2016, 43(6):935-942. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwbhxb201606008 [22] 周德庆.微生物学教程[M]. 2版.北京:高等教育出版社, 2002:356-357. [23] 东秀珠, 蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001. [24] 沈萍.微生物学[M].北京:高等教育出版社, 2000. [25] WEISBURG G, BARNS M, PELLETIER A, et al. 16S Ribosomal DNA Amplification for Phylogenetic Study[J]. Journal of Bacteriology, 1991, 173(2):697-703. doi: 10.1128/jb.173.2.697-703.1991 [26] 谢洁, 夏天, 林立鹏, 等.一株桑树内生拮抗菌的分离鉴定[J].蚕业科学, 2009, 35(1):121-125. doi: 10.3969/j.issn.0257-4799.2009.01.020 [27] 方中达.植病研究方法[M].北京:中国农业出版社, 1998. [28] 王军, 何大敏, 陈廷智, 等.大蒜与3种药用作物对烟草炭疽病菌的抑菌效果[J].西南大学学报(自然科学版), 2018, 40(2):1-7. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201802001&flag=1 [29] 吕倩, 胡江春, 王楠, 等.南海深海甲基营养型芽孢杆菌SHB114抗真菌脂肽活性产物的研究[J].中国生物防治学报, 2014, 30(1):113-120. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswfz201401017 [30] 魏新燕, 黄媛媛, 黄亚丽, 等.甲基营养型芽孢杆菌BH21对葡萄灰霉病菌的拮抗作用[J].中国农业科学, 2018, 51(5):883-892. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnykx201805007 [31] 康林玉, 刘周斌, 欧立军, 等.土壤微生物促进作物生长发育研究进展[J].湖南农业科学, 2017(3):113-116. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunannykx201703032 [32] 任慧爽, 徐伟芳, 王爱印, 等.桑树内生细菌多样性及内生拮抗活性菌群的研究[J].西南大学学报(自然科学版), 2017, 39(1):36-45. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201701007&flag=1 [33] STEIN T. Bacillus subtilis Antibiotics:Structures, Syntheses and Specific Functions[J]. Molecular Microbiology, 2005, 56(4):845-857. doi: 10.1111/j.1365-2958.2005.04587.x [34] PÉREZ-GARCÍA A, ROMERO D, DE VICENTE A. Plant Protection and Growth Stimulation by Microorganisms:Biotechnological Applications of Bacilli in Agriculture[J]. Current Opinion in Biotechnology, 2011, 22(2):187-193. doi: 10.1016/j.copbio.2010.12.003 [35] GOND S K, BERGEN M S, TORRES M S, et al. Endophytic Bacillus spp. Produce Antifungal Lipopeptides and Induce Host Defence Gene Expression in Maize[J]. Microbiological Research, 2015, 172:79-87. doi: 10.1016/j.micres.2014.11.004 [36] 常征, 王蓉, 李洪潮, 等.菌株YS(r)-19分离鉴定及对三七根腐病菌的抑菌活性[J].江苏农业科学, 2017, 45(6):92-95. doi: http://d.old.wanfangdata.com.cn/Periodical/jsnykx201706023 [37] 孙卓, 杨利民.人参锈腐病拮抗细菌的筛选鉴定[J].中国农业大学学报, 2016, 21(2):73-81. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201602009 [38] 尹向田, 苏玲, 吴新颖, 等.芽孢杆菌GSBM05对葡萄白腐病菌的抑菌活性及其鉴定[J].中国农学通报, 2018, 34(1):134-141. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201801024