-
二氢嘧啶酮化合物(DHPMs)具有广泛的生物和药理活性,如抗病毒、抗肿瘤、抗菌、抗癌和抗高血压等[1].近年来,绿色化学的理念深入人心[2],嘧啶酮类衍生物因其具有低毒性、无刺激性等特点而被广泛应用于医药和化工等领域[3],因此DHPMs的合成和应用受到人们的极大关注[4]. 1893年,Biginelli利用浓盐酸催化芳香醛、乙酰乙酸乙酯和尿素三组分,合成了3,4-二氢嘧啶-2(1H)-酮衍生物,该反应称为Biginelli反应[5].此后,人们在研究Biginelli反应的同时,重点在催化剂的选择、反应条件的优化、反应原料范围的扩展、绿色合成方法等方面进行了大量的研究,使得该类反应在条件、产率、产品结构的多样性等方面得到了一定的改善和发展,同时也得到了许多结构新颖的多官能化的3,4-二氢嘧啶酮衍生物.在众多的新型化合物中,N1-取代的DHPMs具有更广泛、更优良的药理及抗菌活性[6],因此,合成更多结构多样的、N1-取代的DHPMs具有一定的意义.
关于N1-取代的3,4-二氢嘧啶-2(1H)-酮衍生物的合成,近年来相继报道了用I2[7],polyphosphate ester[8],MgBr2[9],H3BO3[10],alumina sulfuric acid[11],Y(OAc)3[12],Me3SiCl[13],NaHSO4[14],Co(HSO4)2[15],Cs2CO3[16],Bi(NO)3·5H2O[17]和FeCl3·6H2O[18]等作催化剂,虽然在较短反应时间内,获得较高的产率,但仍存在反应温度高、催化剂昂贵、使用剧毒溶剂或微波辅助等弊端.另外,关于N1-取代的3,4-二氢嘧啶-2(1H)-酮衍生物合成研究较少,所用的取代脲多限于烷基取代,产物结构有限.
为解决以上问题,本研究以廉价、易得的NaHSO4·H2O为催化剂,在70 ℃、无溶剂条件下,通过等摩尔芳香醛、乙酰乙酸甲(乙)酯和单取代烷基或芳基脲的三组分Biginelli反应,绿色、高效地合成了一系列N1-取代的3,4-二氢嘧啶-2(1H)-酮衍生物,其中有2种未有文献报道的新物质.反应方程式为:
A Simple Method for Green Synthesis of N1-Substituted 3, 4-Dihydropyrimidinones
-
摘要: 以等摩尔芳香醛(10 mmol)、乙酰乙酸甲(乙)酯和单取代脲为原料,一水合硫酸氢钠(0.5 mmol)为催化剂,在70℃、无溶剂条件下,采用Biginelli“一锅法”合成了一系列N1-取代的3,4-二氢嘧啶酮衍生物.考察了催化剂用量和反应温度对产率的影响.产品结构经IR,1H NMR和13C NMR进行表征,并通过X-单晶衍射分析确证了其结构.提出了可能的催化作用机理.该方法操作简单,反应条件温和,催化剂廉价易得,产品产率高,是一种绿色合成方法.
-
关键词:
- Biginelli反应 /
- 一锅法 /
- 3, 4-二氢嘧啶酮 /
- 一水合硫酸氢钠
Abstract: This paper reports a one-pot Biginelli condensation of N1-substituted 3, 4-dihydropyrimidinones from equimolar aromatic aldehyde (10 mmol), methyl (ethyl) acetoacetate and monosubstituted urea in the presence of NaHSO4·H2O (0.5 mmol) without any solvent at 70℃. The effects of the catalyst dosage and reaction temperature on the yields are investigated. The structure of the products is characterized by IR, 1H NMR, 13C NMR and X-ray diffraction analysis, and the possible catalytic mechanism is proposed. The advantages of the method are simple operation, mild reaction conditions, inexpensive catalyst, and high yields of products. It is a green synthesis method.-
Key words:
- Biginelli reaction /
- one-pot synthesis /
- 3, 4-dihydropyrimidinone /
- sodium bisulfate monohydrate .
-
表 1 催化剂用量和温度对反应的影响
序号 催化剂用量/mmol 反应温度/℃ 反应时间/min 产率/% 1 0 80 120 39 2 0.1 80 92 53 3 0.2 80 78 62 4 0.3 80 54 65 5 0.4 80 38 73 6 0.5 80 29 85 7 0.6 80 26 83 8 0.7 80 24 80 9 0.5 50 103 67 10 0.5 60 78 74 11 0.5 70 24 85 12 0.5 90 51 81 13 0.5 100 65 75 表 2 NaHSO4·H2O催化三组分“一锅法”合成N1-取代的3,4-二氢嘧啶酮衍生物
序号 R1 R2 R3 时间/
h产率/
%熔点/℃ 实测值 文献值 4a H Et Me 0.4 85 178~181 176~177[16] 4b 3—NO2 Et Me 3.0 81 139~141 136~137[16] 4c 2—OCH3 Et Me 3.0 80 144~146 145~146[12] 4d 4—OH Et Me 1.2 90 179~181 178~180[9] 4e 4—OH—3—CH3O Et Me 0.7 89 175~177 181~183[17] 4f H Me Me 0.3 88 190~192 190~192[9] 4g 2,4—Cl2 Me Me 1.0 93 167~168 162~163[17] 4h 4—NO2 Me Me 0.5 93 184~186 176~178[12] 4i 2—CH3O Me Me 1.5 91 168~170 170~172[12] 4j 4—OH—3—CH3O Me Me 0.5 90 200~202 204~206[17] 4k 3—OH Et Et 0.5 94 181~182 182~184[17] 4l 4—Cl Et Et 0.8 94 142~144 - 4m 4—NO2 Me Et 1.3 85 197~198 - 4n 4—Cl Me Et 1.5 91 147~148 146~148[18] 4o 2,4—Cl2 Et Ph 1.0 90 185~187 178~180[18] 4p H Et p-CH3C6H4 1.0 76 180~182 179~182[18] -
[1] KAPPE C O. 100 Years of the Biginelli Dihydropyrimidine Synthesis[J]. Tetrahedron, 1993, 49(32):6937-6963. doi: 10.1016/S0040-4020(01)87971-0 [2] 钟国清.无机及分析化学实验改革与绿色化实验教材建设[J].西南师范大学学报(自然科学版), 2018, 43(5):162-166. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201805027 [3] 章思规.精细有机化学品技术手册:下册[M].北京:科学出版社, 1992. [4] 崔朋雷, 李晓慧, 张冬暖, 等.微波辐射下一锅法合成5-氰基-6-芳基硫脲嘧啶[J].西南大学学报(自然科学版), 2014, 36(7):79-83. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2014-07-079&flag=1 [5] BIGINELLI P. Aldehyde-Urea Derivatives of Aceto-and Oxaloacetic Acids[J]. Gazzetta Chimica Italiana, 1893, 23(1):360-413. [6] SINGH K, ARORA D, POREMSKY E, et al. N1-Alkylated 3, 4-dihydropyrimidine-2(1H)-ones:Convenient One-Pot Selective Synthesis and Evaluation of Their Calcium Channel Blocking Activity[J]. European Journal of Medicinal Chemistry, 2009, 44(5):1997-2001. doi: 10.1016/j.ejmech.2008.10.002 [7] ZALAVADIYA P, TALA S, AKBARI J, et al. Multi-Component Synthesis of Dihydropyrimidines by Iodine Catalyst at Ambient Temperature and in-vitro Antimycobacterial Activity[J]. Archiv Der Pharmazie, 2009, 342(8):469-475. doi: 10.1002/ardp.200800224 [8] KAPPE C O. Microwave-Assisted High-Speed Parallel Synthesis of4-Aryl-3, 4-dihydropyrimidin-2(1H)-ones Using a Solventless Biginelli Condensation Protocol[J]. Synthesis, 1999, 1999(10):1799-1803. doi: 10.1055/s-1999-3592 [9] SALEHI H, GUO Q X. Efficient Magnesium Bromide-Catalyzed One-Pot Synthesis of Substituted 1, 2, 3, 4-Tetrahydropyrimidin-2-ones Under Solvent-Free Conditions[J]. Chinese Journal of Chemistry, 2005, 23(1):91-97. [10] ISMAILI L, NADARADJANE A, NICOD L, et al. Synthesis and Antioxidant Activity Evaluation of New Hexahydropyrimido[5, 4-C] quinoline-2, 5-Diones and 2-Thioxohexahydropyrimido[5, 4-C] quinoline-5-Ones Obtained by Biginelli Reaction in Two Steps[J]. European Journal of Medicinal Chemistry, 2008, 43(6):1270-1275. doi: 10.1016/j.ejmech.2007.07.012 [11] BESOLUK S, KUCUKISLAMOGLU M, NEBIOGLU M, et al. Solvent-Free Synthesis of Dihydropyrimidinones Catalyzed by Alumina Sulfuric Acid at Room Temperature[J]. Journal of the Iranian Chemical Society, 2008, 5(1):62-66. doi: 10.1007/BF03245816 [12] ARIDOSS G, JEONG Y T. A Convenient One-Pot Biginelli Reaction Catalyzed by Y(OAc)3:An Improved Protocol for the Synthesis of 3, 4-Dihydropyrimidin-2(1H)-ones and Their Sulfur Analogues[J]. Bulletin of the Korean Chemical Society, 2010, 31(4):863-868. doi: 10.5012/bkcs.2010.31.04.863 [13] LI W J, LIU S, HE P, et al. New Efficient Synthesis of Pyrimido[1, 6-c] Quinazolin-4-Ones by a Biginelli 3CC/Staudinger/Aza-Wittig Sequence[J]. Tetrahedron, 2010, 66(41):8151-8159. doi: 10.1016/j.tet.2010.08.046 [14] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da29bf580cd579f1f90d859eb2658172 CHENG Q F, WANG Q F, XU X Y, et al. Solvent-Free Synthesis of Monastrol Derivatives Catalyzed by NaHSO4[J]. Journal of Heterocyclic Chemistry, 2010:47(3):624-628. [15] MEMARIAN H R, RANJBAR M. Synthesis of Biginelli Compounds Using Cobalt Hydrogen Sulfate[J]. Journal of the Chinese Chemical Society, 2011, 58(4):522-527. doi: 10.1002/jccs.201190016 [16] doi: http://www.sciencedirect.com/science/article/pii/S0223523412002954 PUTATUNDA S, CHAKRABORTY S, GHOSH S, et al. Regioselective N1-Alkylation of 3, 4-dihydropyrimidine-2(1H)-ones:Screening of Their Biological Activities Against Ca2+-ATPase[J]. European Journal of Medicinal Chemistry, 2012, 54(8):223-231. [17] 王敏, 姜宏旭, 张顺, 等.硝酸铋催化三组分"一锅法"合成N1-取代的3, 4-二氢嘧啶酮衍生物[J].化学研究与应用, 2017, 29(10):1584-1589. doi: 10.3969/j.issn.1004-1656.2017.10.023 [18] 王敏, 张顺, 姜宏旭.无溶剂条件下三氯化铁高效催化合成N1-取代的3, 4-二氢嘧啶-2(1H)-酮[J].渤海大学学报(自然科学版), 2017, 38(4):289-294. doi: 10.3969/j.issn.1673-0569.2017.04.002 [19] KAPPE C O. A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate1[J]. The Journal of Organic Chemistry, 1997, 62(21):7201-7204. doi: 10.1021/jo971010u