Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 42 Issue 7
Article Contents

Min FENG, Jun ZHOU. Blow-Up of Solutions to a Nonlocal Parabolic Equation with a Singular Potential[J]. Journal of Southwest University Natural Science Edition, 2020, 42(7): 124-129. doi: 10.13718/j.cnki.xdzk.2020.07.011
Citation: Min FENG, Jun ZHOU. Blow-Up of Solutions to a Nonlocal Parabolic Equation with a Singular Potential[J]. Journal of Southwest University Natural Science Edition, 2020, 42(7): 124-129. doi: 10.13718/j.cnki.xdzk.2020.07.011

Blow-Up of Solutions to a Nonlocal Parabolic Equation with a Singular Potential

More Information
  • Corresponding author: Jun ZHOU
  • Received Date: 02/01/2018
    Available Online: 20/07/2020
  • MSC: O175.2

  • In this paper, we consider a nonlocal parabolic equation with a singular potential on a bounded smooth domain with the homogeneous Neumann boundary condition.We study the blow-up properties of the solutions and establish a sufficient condition on initial data such that the solutions blow-up in finite time.
  • 加载中
  • [1] HU B, YIN H M.Semilinear Parabolic Equations with Prescribed Energy[J].Rendiconti Del Circolo Matematico Di Palermo, 1995, 44(3):479-505.

    Google Scholar

    [2] BUDD C J, DOLD J W, STUART A M.Blow-up in a System of Partial Differential Equations with Conserved First Integral.Part II:Problems with Convection[J].SIAM Journalon Applied Mathematics, 1994, 54(3):610-640. doi: 10.1137/S0036139992232131

    CrossRef Google Scholar

    [3] EL SOUFI A, JAZAR M, MONNEAU R.A Gamma-Convergence Argument for the Blow-up of a Non-Local Semilinear Parabolic Equation with Neumann Boundary Conditions[J].Annales Del' Institut Henri Poincare (C) Non Linear Analysis, 2007, 24(1):17-39. doi: 10.1016/j.anihpc.2005.09.005

    CrossRef Google Scholar

    [4] JAZAR M, KIWAN R.Blow-up of a Non-Local Semilinear Parabolic Equation with Neumann Boundary Conditions[J].Annales Del' Institut Henri Poincare (C) Non Linear Analysis, 2008, 25(2):215-218. doi: 10.1016/j.anihpc.2006.12.002

    CrossRef Google Scholar

    [5] GAO W J, HAN Y Z.Blow-up of a Nonlocal Semilinear Parabolic Equation with Positive Initial Energy[J].AppliedMathematics Letters, 2011, 24(5):784-788.

    Google Scholar

    [6] KHELGHATI A, BAGHAEI K.Blow-up Phenomena for a Nonlocal Semilinear Parabolic Equation with Positive Initial Energy[J].Computers & Mathematics With Applications, 2015, 70(5):896-902.

    Google Scholar

    [7] HAO A J, ZHOU J.A New Blow-up Condition for a Parabolic Equation with Singular Potential[J].Journal of Mathematical Analysis and Applications, 2017, 449(1):897-906. doi: 10.1016/j.jmaa.2016.12.040

    CrossRef Google Scholar

    [8] TAN Z.Non-Newton Filtration Equation with Special Medium Void[J].ActaMathematicaScientia, 2004, 24(1):118-128. doi: 10.1016/S0252-9602(17)30367-3

    CrossRef Google Scholar

    [9] WANG Y.The Existence of Global Solution and the Blowup Problem for some p-Laplace Heat Equations[J].ActaMathematica Scientia, 2007, 27(2):274-282.

    Google Scholar

    [10] ZHOU J.A Multi-Dimension Blow-up Problem to a Porous Medium Diffusion Equation with Special Medium Void[J].Applied Mathematics Letters, 2014, 30:6-11. doi: 10.1016/j.aml.2013.12.003

    CrossRef Google Scholar

    [11] FENG M, ZHOU J.Global Existence and Blow-up of Solutions to a Nonlocal Parabolic Equation with Singular Potential[J].Journal of Mathematical Analysis and Applications, 2018, 464(2):1213-1242. doi: 10.1016/j.jmaa.2018.04.056

    CrossRef Google Scholar

    [12] FELLI V, MARCHINI E M, TERRACINI S.On Schrödinger Operators with Multipolar Inverse-Square Potentials[J].Journal of Functional Analysis, 2007, 250(2):265-316.

    Google Scholar

    [13] MANES A, MICHELETTI A M.Un'estensione Della TeoriaVariazionale Classica degli Autovalori per Operatori Ellittici del Secondo Ordine[J].Boll Unione Mat Ital, 1973, 7(4):285-301.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(679) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Blow-Up of Solutions to a Nonlocal Parabolic Equation with a Singular Potential

    Corresponding author: Jun ZHOU

Abstract: In this paper, we consider a nonlocal parabolic equation with a singular potential on a bounded smooth domain with the homogeneous Neumann boundary condition.We study the blow-up properties of the solutions and establish a sufficient condition on initial data such that the solutions blow-up in finite time.

  • 本文主要研究如下带有奇异项的一类非局部抛物方程:

    其中Ω${\mathbb{R}^n}$(n≥3)中具有光滑边界∂Ω的有界区域,Δ是拉普拉斯算子,ν∂Ω上的外单位法向量.参数ps满足下列条件

    且0≢u0(x)∈W,其中

    近年来,形似问题(1)的非局部抛物方程已经被广泛地研究并应用于不同的领域.其中,文献[1-6]研究了问题(1)中s=0时的特殊情况,即方程

    的解的全局存在性、爆破条件、爆破时间估计和全局解的渐进行为等问题.通过使用位势井方法,文献[7-10]探究了方程

    的解的全局存在性和爆破性质.类似的,本文主要是研究问题(1)的解的爆破条件.

    在本文中用║·║q来表示Lq(Ω)(1≤q≤+∞)的范数,用║·║H1(Ω)来表示H1(Ω)的范数,即

    并把问题(1)的解的最大存在时间记为Tmax.当参数ps满足(2)时,空间(W,║·║H1(Ω))是一个巴拿赫空间且║▽(·)║2是║·║H1(Ω)的一个等价范数(见文献[11]中的引理3.1).因此可以赋予W一个新的范数

    且(W,║·║)仍然是一个巴拿赫空间.

    为了更好地展开论述,接下来再介绍一下文献[11]中已有的一些标记:

    其中B是最佳嵌入常数.在文献[11]中已经对问题(1)和其解的存在空间W进行了说明,并且对解的全局存在性和爆破性质进行了深入探讨.文献[11]定理2.9给出了问题(1)的解在有限时间内爆破的一个充分条件:如果ps满足条件(2),并且初始能量满足

    则问题(1)的解u(xt)就会在有限时间内爆破,其中λ1是特征值问题

    的最小特征值且

    那么在此基础上自然就有一个疑问:当$J({u_0}) \ge \frac{{(p - 1){\lambda _1}}}{{2(p + 1)}}\left\| {{{\left| x \right|}^{ - \frac{s}{2}}}{u_0}} \right\|_2^2$时,解是否也会爆破?

    本文主要就是针对上述问题展开的讨论,对$J({u_0}) \ge \frac{{(p - 1){\lambda _1}}}{{2(p + 1)}}\left\| {{{\left| x \right|}^{ - \frac{s}{2}}}{u_0}} \right\|_2^2$的条件下解的爆破性质进行了研究,得到的结论如下:

    定理1 假设参数ps满足条件(2)并且u(xt)是问题(1)的一个非零解,则当初始数据u0W\{λ*e,-λ*e}且满足

    时,解u(xt)会在有限时间爆破.其中λ1的定义如(12)式所示,eλ1对应的特征函数且

    注1 可对文献[11]和本文的结论总结如下:当参数ps满足条件(2)且初始数据u0Z时,问题(1)的解是全局存在的;当参数ps满足条件(2)且初始数据u0V*时,问题(1)的解是有限时间爆破的.其中集合ZV*的定义如(15)式所示.

    为了证明定理1,先给出一些准备知识和引理.首先定义一个新的函数:

    和一些新的集合:

    我们将在下面的引理中证明集合N*K都是非空的.

    引理1 令E=span{e}.则对任意的ϕE都存在唯一的λ*>0,使得λ*ϕN*,且当λλ*时,λϕ$N_ - ^*$;当0<λλ*时,λϕ$N_ + ^*$.其中

     对任意的ϕE和常数λ≥0,定义

    由(12)式可得

    所以,λ*g(λ)=0的唯一正根且当λ∈(0,λ*)时,g(λ)>0;当λ∈(λ*,∞)时,g(λ)<0.这也就说明了N*ØN*\span{e} ≠Ø.

    其次,由文献[7, 12-13]易知,令eλ1对应的特征函数,则λ1可以被特征化为下列形式:

    于是有下列引理2.

    引理2 记

    其中eλ1对应的特征函数,则N*N={λ*e,-λ*e}.

     从λ*的定义不难看出I(λ*e)=0且I(-λ*e)=0,即λ*eN,-λ*eN.由(17)式知,${\left\| e \right\|^2} = {\lambda _1}\left\| {{{\left| x \right|}^{ - \frac{s}{2}}}e} \right\|_2^2$.从而

    λ*eN*N,-λ*eN*N.另一方面,对任意的ϕN*∩N有

    则由λ1是简化的和ϕ≠0知,存在0≠λ0$\mathbb{R}$,使得ϕ=λ0e.又因为ϕN,所以I(ϕ)=I(λ0e)=0,从而λ0=λ*或-λ*.也就说明了N*N={λ*e,-λ*e}.

    定理1的证明 要证明定理1,只需要证明当ps满足条件(2)且u0N*\{λ*e,-λ*e}时,(1)式的解是有限时间爆破的即可.首先,由文献[11]已知

    u0N*\{λ*e,-λ*e},则由(17)式可得

    我们只需要考虑I(u0)<0的情况即可.事实上,当I(u0)=0时,由u0N*u0≠0,从而u0N,即u0N*N,则根据引理2,一定有u0=λ*eu0=-λ*e,与u0的选择相矛盾.

    I(u0)<0时,先来说明对任意的t∈[0,Tmax)都有I(u(t))<0.否则,一定存在一个t0∈(0,Tmax)使得I(u(t0))=0且I(u(t))<0,t∈[0,t0).则由(23)式可知$\left\| {{{\left| x \right|}^{ - \frac{s}{2}}}u} \right\|_2^2$在区间[0,t0)上是严格递增的.进一步由J*(u)的定义可得

    另一方面,因为u0≠0,所以也有u(t0)≠0,从而u(t0)∈N.再由(17)式和(22)式可得

    (26) 与(25)式相互矛盾.

    再结合(22)和(23)两式,对任意的t∈[0,Tmax)可得

    又因为J*(u0)=0,所以一定存在某个足够小的t*>0使得J*(u(t*))<0,即

    因此可把u(t*)看作初始数据,根据文献[11]中的定理2.9便可得到Tmax<∞.综上所述,定理1得证.

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return