Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 12
Article Contents

ZOU Siyan, TIAN Tian, WU Minfang, et al. Establishment of an In vitro Regeneration System of Malus asiatica in Guizhou and Its Optimalization[J]. Journal of Southwest University Natural Science Edition, 2021, 43(12): 19-25. doi: 10.13718/j.cnki.xdzk.2021.12.003
Citation: ZOU Siyan, TIAN Tian, WU Minfang, et al. Establishment of an In vitro Regeneration System of Malus asiatica in Guizhou and Its Optimalization[J]. Journal of Southwest University Natural Science Edition, 2021, 43(12): 19-25. doi: 10.13718/j.cnki.xdzk.2021.12.003

Establishment of an In vitro Regeneration System of Malus asiatica in Guizhou and Its Optimalization

More Information
  • Corresponding author: WEN Xiaopeng
  • Received Date: 08/07/2020
    Available Online: 20/12/2021
  • MSC: Q813.1

  • In order to lay a technical foundation for the efficient genetic breeding of Malus asiatica, an in vitro regeneration system of this species was established in a study reported in this paper. A local M. asiaticavariety from Quanxi county of Guizhou was used as the material, and MS as the basic medium. The influences of different explants, culture conditions and growth regulators on the regeneration, proliferation and rooting of the adventitious buds were investigated and optimized. The results showed that the best explant was the cotyledon of mature embryos and the optimal medium for regeneration induction was MS +1.0 mg/L TDZ+0.05 mg/L NAA. Dark culture for 7 d followed by light culture for 50 d gave a regeneration rate of 38.9% and an average number of regenerated buds of 11.7. The regeneration rate of the near-embryonic end was 11 times that of the far-embryonic end. The optimal proliferation medium was MS+1.0 mg/L 6-BA+0.3 mg/L NAA, and gave a proliferation coefficient of 4.73. The optimum rooting medium was 1/2 MS+1.0 mg/L IBA+0.2 mg/L NAA, the rooting rate being higher than 60%.
  • 加载中
  • [1] 宋莎, 吴亚维, 季祥彪, 等. 贵州苹果砧木资源亲缘关系的ISSR分析[J]. 华中农业大学学报, 2013, 32(1): 19-24.

    Google Scholar

    [2] 张悦, 傅建敏, 李福海, 等. 蔷薇科核果类果树组织培养研究进展[J]. 经济林研究, 2011, 29(1): 155-160.

    Google Scholar

    [3] RADCHUK V V, KORKHOVOY V I. The rolB Gene Promotes Rooting In vitro and Increases Fresh Root Weight In vivo of Transformed Apple Scion Cultivar 'Florina'[J]. Plant Cell, Tissue and Organ Culture, 2005, 81(2): 203-212. doi: 10.1007/s11240-004-5113-3

    CrossRef Google Scholar

    [4] 刘霁菡, 代红艳, 赵恺, 等. 平邑甜茶子叶和下胚轴离体再生不定芽的研究[J]. 东北农业大学学报, 2011, 42(10): 90-94.

    Google Scholar

    [5] 蒋启林, 邓家林, 代正林. 矮花红幼胚诱导成苗及组培快繁[J]. 四川果树, 1994(2): 10.

    Google Scholar

    [6] 万莹. 来安花红茎段组织培养研究[D]. 南京: 南京林业大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10298-1015016147.htm

    Google Scholar

    [7] 陈鑫. 来安花红的组织培养研究[D]. 南京: 南京林业大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10298-1015809349.htm

    Google Scholar

    [8] 暴志茹. 二球悬铃木子叶再生体系的建立及ANT和BEL1同源基因的功能研究[D]. 武汉: 华中农业大学, 2018.http://cdmd.cnki.com.cn/Article/CDMD-10504-1018182457.htm

    Google Scholar

    [9] 刘淑芳, 续海红. 不同发育期梨胚的再生能力[J]. 江苏农业科学, 2012, 40(7): 63-64. doi: 10.3969/j.issn.1002-1302.2012.07.022

    CrossRef Google Scholar

    [10] NING G G, BAI S P, BAO M Z, et al. Factors Affecting Plantlet Regeneration from In vitro Cultured Immature Embryos and Cotyledons of Prunus Mume "Xue Mei"[J]. In vitro Cellular & Developmental Biology-Plant, 2007, 43(3): 225-230.

    Google Scholar

    [11] 师桂英, 徐秉良, 薛应钰. 厚皮甜瓜黄河蜜植株再生研究[J]. 兰州大学学报, 2006, 42(5): 48-51.

    Google Scholar

    [12] MAZUMDAR P, BASU A, PAUL A, et al. Age and Orientation of the Cotyledonary Leaf Explants Determine the Efficiency of de Novo Plant Regeneration and Agrobacterium Tumefaciens-Mediated Transformation in Jatropha curcas L. [J]. South African Journal of Botany, 2010, 76(2): 337-344.

    Google Scholar

    [13] 杨海峰. 酸樱桃(Prunus cerasus)叶片离体再生方法的研究[D]. 呼和浩特: 内蒙古农业大学, 2001.https://d.wanfangdata.com.cn/thesis/Y382463

    Google Scholar

    [14] 咸宏康, 支秋娟, 李卉, 等. 金樱子(Rosa laevigata Michx. )叶片直接再生不定芽体系的建立[J]. 北方园艺, 2019(13): 93-100.

    Google Scholar

    [15] 王红英. 富平楸子再生体系建立及多倍体的诱导研究[D]. 杨凌: 西北农林科技大学, 2019.https://d.wanfangdata.com.cn/thesis/D01712539

    Google Scholar

    [16] 苏家乐, 刘晓青, 何丽斯, 等. 杜鹃品种'江南春早'叶片离体再生体系的建立[J]. 分子植物育种, 2019, 17(4): 1283-1289.

    Google Scholar

    [17] 王清民. 核桃不定根发生调控的组织和免疫化学研究[D]. 北京: 中国林业科学研究院, 2007.https://d.wanfangdata.com.cn/thesis/Y1173875

    Google Scholar

    [18] 郭佳, 李衍素, 贺超兴, 等. 南瓜高效再生体系的建立[J]. 植物学报, 2019, 54(4): 539-546.

    Google Scholar

    [19] 崔凯荣, 邢更生, 周功克, 等. 植物激素对体细胞胚胎发生的诱导与调节[J]. 遗传, 2000, 22(5): 349-354.

    Google Scholar

    [20] KORBAN S S, O'CONNOR P A, ELOBEIDY A. Effects of Thidiazuron, Naphthaleneacetic Acid, Dark Incubation and Genotype on Shoot Organogenesis from Malus Leaves[J]. Journal of Horticultural Science, 1992, 67(3): 341-349.

    Google Scholar

    [21] PÉREZ-TORNERO O, EGEA J, VANOOSTENDE A, et al. Assessment of Factors Affecting Adventitious Shoot Regeneration from In vitro Cultured Leaves of Apricot[J]. Plant Science, 2000, 158(1/2): 61-70.

    Google Scholar

    [22] SCHULZE J. Improvements in Cereal Tissue Culture by Thidiazuron: a Review[J]. Fruit, Vegetable and Cereal Science and Biotechnology, 2007, 1(2): 64-79.

    Google Scholar

    [23] DEWIR Y H, NURMANSYAH, NAIDOO Y, et al. Thidiazuron-Induced Abnormalities in Plant Tissue Cultures[J]. Plant Cell Reports, 2018, 37(11): 1451-1470.

    Google Scholar

    [24] GAMBHIR G, KUMAR P, SRIVASTAVA D K. High Frequency Regeneration of Plants from Cotyledon and Hypocotyl Cultures in Brassica oleracea cv. Pride of India[J]. Biotechnology Reports, 2017, 15: 107-113.

    Google Scholar

    [25] 周雨, 付巧, 汪意, 等. 不同激素对白及种子无菌萌发生长的影响[J]. 种子, 2019, 38(2): 83-85, 88.

    Google Scholar

    [26] 宋常美, 文晓鹏. 4种贵州樱桃的高效离体再生[J]. 西南大学学报(自然科学版), 2015, 37(9): 19-24.

    Google Scholar

    [27] 吴瑞刚. 几种无融合苹果砧木离体再生及其遗传转化体系的建立[D]. 泰安: 山东农业大学, 2013.https://d.wanfangdata.com.cn/thesis/Y2303579

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  /  Tables(4)

Article Metrics

Article views(2144) PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Establishment of an In vitro Regeneration System of Malus asiatica in Guizhou and Its Optimalization

    Corresponding author: WEN Xiaopeng

Abstract: In order to lay a technical foundation for the efficient genetic breeding of Malus asiatica, an in vitro regeneration system of this species was established in a study reported in this paper. A local M. asiaticavariety from Quanxi county of Guizhou was used as the material, and MS as the basic medium. The influences of different explants, culture conditions and growth regulators on the regeneration, proliferation and rooting of the adventitious buds were investigated and optimized. The results showed that the best explant was the cotyledon of mature embryos and the optimal medium for regeneration induction was MS +1.0 mg/L TDZ+0.05 mg/L NAA. Dark culture for 7 d followed by light culture for 50 d gave a regeneration rate of 38.9% and an average number of regenerated buds of 11.7. The regeneration rate of the near-embryonic end was 11 times that of the far-embryonic end. The optimal proliferation medium was MS+1.0 mg/L 6-BA+0.3 mg/L NAA, and gave a proliferation coefficient of 4.73. The optimum rooting medium was 1/2 MS+1.0 mg/L IBA+0.2 mg/L NAA, the rooting rate being higher than 60%.

  • 开放科学(资源服务)标志码(OSID):

  • 花红(Malus asiatica)属蔷薇科(Rosaceae)苹果属(Malus)落叶小乔木,既可以作为果实开发,也可以作为苹果的良好砧木,同时也是贵州省重要的苹果种质资源[1],但其繁殖效率较低. 高效的离体再生体系对于苗木快繁具有重要意义[2],也是开展遗传转化研究的前提[3]. 外植体的选择对于植物离体再生体系的建立至关重要,叶片是苹果属植物离体再生常用的外植体,此外,子叶、茎尖和下胚轴等均可通过组织培养诱导出完整植株[4]. 花红的离体再生研究较早,蒋启林等[5]利用花红幼胚成功诱导成苗并建立快繁体系,万莹[6]和陈鑫[7]以来安花红茎段为外植体建立了快繁体系,但易受胚发育程度和数量的限制,也会受茎段木质化程度所影响,致其繁殖系数相对较低. 由于叶片和子叶不受材料发育阶段及数量的限制,本研究以花红叶片和子叶为外植体诱导再生,探究不同因子对其直接再生不定芽频率的影响,以期建立高效的花红离体再生体系,为花红转基因工作奠定理论基础,也为花红新品种培育和砧木遗传改良提供新途径.

1.   材料与方法
  • 以贵州省黔西县本地品种花红的幼胚、子叶(成熟胚)及组培苗叶片为材料.

  • 幼胚:取花后40 d的花红幼果,自来水冲洗1 h,于超净工作台上用75%的酒精灭菌30 s,无菌水洗2~3次,再用0.1%的升汞溶液加2滴吐温20灭菌10 min,无菌水清洗3~4次,吸水纸吸干水分,切除果肉,取出幼胚备用.

    子叶:选取成熟饱满、颗粒均一的花红种子,用无菌水浸泡10 min后,于超净工作台上用75%的酒精消毒30 s,无菌水洗2~3次,再用10%的次氯酸钠溶液处理10 min,无菌水洗3~4次,吸水纸吸干水分后,剥除种皮,取出两片子叶,顶端胚芽切除,另一端切去1/3备用.

    叶片:取本实验室继代保存的花红组培苗上部幼嫩的叶片,将叶片边缘和叶柄切除,用手术刀垂直主叶脉将背面(远轴面)划伤备用.

  • 取上述幼胚和成熟胚的子叶为外植体,正面朝上分别接种于以MS为基础培养基、添加2.0 mg/L TDZ和0.1 mg/L NAA的不定芽诱导培养基中;叶片外植体背面朝上接种到叶片不定芽诱导培养基中(MS+3.0 mg/L TDZ+0.20 mg/L NAA+0.5 mg/L IBA). 暗培养7 d后转光下培养,光照时间为12 h/d,培养温度(25±1) ℃,光照强度2 000~2 500 lx. 每个处理接种20个,重复3次.

  • 将上述成熟胚的子叶斜切近胚芽端,正切另一端,接种于再生培养基(MS+1.0 mg/L TDZ+0.05 mg/L NAA)上,分别进行不同时间(0 d,7 d,14 d)的暗培养处理. 每个处理接种20个,重复3次.

  • 为筛选诱导不定芽分化的最佳组合生长调节物质(Plant Growth Regulator,PGR),将上述成熟胚的子叶分别接种于16个含有不同浓度的TDZ(1.0,2.0,3.0,4.0 mg/L),NAA(0.05,0.10,0.20,0.40 mg/L),IBA(0,0.05,0.10,0.20 mg/L)不定芽再生培养基中,暗培养7 d后转光下培养50 d. 每个处理接种20个子叶,重复3次. 光下培养50 d后统计各处理下不定芽的诱导率.

  • 待子叶诱导出丛芽之后(50 d),切除多余子叶,将丛芽分别转入到含有0.05 mg/L 6-BA培养基中,培养2周后,切取长势一致的单株芽分别接种于9个不同浓度6-BA(1.0,2.0,4.0 mg/L)和NAA(0.1,0.2,0.3 mg/L)的增殖培养基中,每瓶接种4株,重复5次. 光下培养40 d后,观察记录不定芽的生长情况,并统计其增殖系数.

  • 待不定芽生长至1.5~2.5 cm时,用解剖刀切取单株的苗接种于含有不同激素浓度的生根培养基中,生根培养基采用1/2 MS+ 20 mg/L蔗糖+6 mg/L琼脂作为基础培养基,添加不同浓度的IBA(0.5,1.0,2.0 mg/L)和NAA(0,0.1,0.2 mg/L). 每个处理接种4株增殖苗,重复5次,培养40 d后统计各处理的生根情况.

  • 所有统计数据均采用Excel软件进行处理,采用SPSS 21.0软件进行Duncan检验及差异显著性分析.

2.   结果与分析
  • 不同外植体对花红离体再生有很大的影响. 结果表明,花红子叶与幼胚和叶片在再生培养基上的再生率有差异,幼胚和叶片均无不定芽形成,成熟胚的子叶培养于MS+2.0 mg/L TDZ+0.1 mg/L NAA培养基中,不定芽再生率为11.67%.

  • 前期暗培养对植物再生不定芽有一定的促进作用,暗培养7 d能够显著促进子叶再生不定芽. 结果表明,子叶暗培养后变黄,且体积膨大至原来的2倍时,未经暗培养的子叶无明显变化(表 1). 暗培养7 d后转入光下培养13 d,子叶开始产生不定芽(图 1a);暗培养0 d和暗培养14 d的子叶均无不定芽产生.

    暗培养7 d后的子叶转光下培养,子叶迅速转绿,近轴面近胚芽端切口处出现疑似不定芽雏形,接种20 d后开始出现不定芽,并陆续发育成小植株. 50 d时不定芽再生率达到最高(图 1b),子叶再生的不定芽大部分发生于近轴面近胚端切口处,再生率达36.7%,相较远胚端增高约11倍(表 1),表现出明显的极性效应.

  • 植物生长调节剂对花红子叶再生不定芽有很大影响. 结果表明,在添加了1.0 mg/L TDZ和0.05 mg/L NAA的MS培养基上,子叶诱导不定芽的再生率最高达38.9%,再生芽数最多,平均11.7个(表 2).

  • 不同6-BA和NAA浓度配比对花红不定芽的增殖系数及增殖效果影响较大(表 3),培养基MS+4.0 mg/L 6-BA+0.2 mg/L NAA的不定芽增殖系数最高,为7.73,但芽细弱,长势差,呈玻璃化状. 从芽的长势及健康程度来看,培养基MS+1.0 mg/L 6-BA+0.3 mg/L NAA中不定芽生长状态最好,伸长明显(图 1c),增殖系数较高,为最佳增殖培养基.

  • 增殖后的花红不定芽在含有不同浓度IBA(0.5,1.0,2.0 mg/L)和不同浓度NAA(0,0.1,0.2 mg/L)的1/2MS生根培养基中进行生根培养,一段时间后不同浓度组合的生根率有明显差异. 结果表明,1/2 MS+1.0 mg/L IBA+0.2 mg/L NAA生根培养基,暗培养7 d后转入光照培养生根率(60%)最高,且根系粗壮,须根多(图 1f).

3.   讨论
  • 以往对花红组织培养的研究中,多以幼胚和带芽茎段为外植体建立快繁体系,但是繁殖系数受胚发育程度和茎段木质化影响较大[5-7]. 二球悬铃木再生研究表明,子叶再生体系较叶片再生体系受基因型影响较小、组织肥厚不易褐化、再生效率更加稳定[8],并且子叶具有丰富的营养物质,作为外植体被广泛应用于不定芽再生体系中[9-10]. 幼胚发育至接近子叶期才有不定芽发生的能力[11],且成熟胚子叶作为外植体再生不定芽诱导率较高,再生能力较强[12]. 本试验研究了花红的幼胚、成熟胚的子叶和叶片离体再生不定芽的能力,结果仅有花红成熟胚的子叶作为外植体,成功建立了花红的离体再生体系. 杨海峰[13]认为全光照是获得高效再生的关键技术之一,但也有研究指出,前期暗培养有利于不定芽的再生[14-16]. 本研究的结果表明,暗培养7 d比直接光照培养更有利于花红子叶再生不定芽,且近胚端再生率显著高于远胚端,导致该结果的主要因素可能是与子叶近胚端到远胚端IAA(吲哚乙酸)信号逐渐减弱、生长素差异分布有关[17].

    生长调节物质的种类和含量对植物离体再生植株的影响极大[18],其对植物器官直接发生途径的影响首先表现在对不定芽的诱导上[19]. 前人的研究结果[20-21]表明,TDZ较6-BA更有利于离体不定芽的再生,TDZ能显著促进较难诱导分化的植物的离体培养,能有效改善其诱导率[22-23]. 有研究证实,适宜浓度的TDZ是诱导西瓜外植体分化的关键,低浓度NAA也有利于西瓜外植体的分化[24]. TDZ与NAA的适宜浓度比能促进花红不定芽的分化,但高浓度TDZ会明显抑制不定芽的再生,且诱导出的不定芽失绿,生长缓慢,后期褐化死亡.

    当NAA浓度高于1.0 mg/L时会加重组培苗玻璃化效应,而低浓度的6-BA能有效降低玻璃化效应[25]. 在花红增殖培养过程中,高浓度6-BA和NAA的组合使得组培苗出现玻璃化现象,叶片变脆,丛芽难以分离成单株等问题. 宋常美等[26]的研究表明,壮苗培养可适当加入赤霉素(GA),GA不仅能促进增殖,还能促进生根,缩短了壮苗的时间. 万莹[6]的研究由于激素用量、基本培养基不适及品种性能等原因,导致在来安花红离体快繁的研究中未获得生根试管苗. 本试验综合“锡金海棠”和“青砧一号”的生根培养基[27],通过IBA和NAA适宜的浓度配比成功获得了花红生根苗.

    综上所述,本研究以花红成熟子叶作为外植体,接种于含有1.0 mg/L TDZ和0.05 mg/L NAA的MS培养基中,可高效诱导出花红不定芽. 经生根培养后可获得完整再生植株,实现花红再生体系的优化. 再生体系的建立为进一步开展花红的细胞工程及基因工程遗传育种奠定了技术基础.

Figure (1)  Table (4) Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return