Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 1
Article Contents

Xin MENG. Anti-Periodic Solutions for Discrete Systems with Generalized Exponential Dichotomy[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(1): 1-5. doi: 10.13718/j.cnki.xsxb.2020.01.001
Citation: Xin MENG. Anti-Periodic Solutions for Discrete Systems with Generalized Exponential Dichotomy[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(1): 1-5. doi: 10.13718/j.cnki.xsxb.2020.01.001

Anti-Periodic Solutions for Discrete Systems with Generalized Exponential Dichotomy

More Information
  • Received Date: 16/04/2018
    Available Online: 20/01/2020
  • MSC: O175.7

  • In this paper, the anti-periodic solutions have been studied for nonlinear discrete systems with generalized exponential dichotomy. Firstly, it is pointed out that if the homogeneous linear system has generalized exponential dichotomy. Secondly, the nonhomogeneous linear system admits an anti-periodic solution. And lastly, by using the above conclusion and the fixed point theorem, sufficient conditions for the existence of anti-periodic solutions for nonlinear discrete systems are established.
  • 加载中
  • [1] BEREZANSKY L, BRAVERMAN E.On Exponential Dichotomy, Bohl-Perron Type Thorems and Stability of Difference Equations[J].Journal of Mathematical Analysis and Applications, 2005, 304(2):511-530.

    Google Scholar

    [2] SASU A L.Exponential Dichotomy and Dichotomy Radius for Difference Equations[J].Journal of Mathematical Analysis and Applications, 2008, 344(2):906-920. doi: 10.1016/j.jmaa.2008.03.019

    CrossRef Google Scholar

    [3] CARDOSO F, CUEVAS C.Exponential Dichotomy and Boundedness for Retarded Functional Difference Equations[J].Journal of Difference Equations and Applications, 2009, 15(3):261-290. doi: 10.1080/10236190802125330

    CrossRef Google Scholar

    [4] ZHANG J, FAN M, ZHU H.Existence and Roughness of Exponential Dichotomies of Linear Dynamic Equations on Time Scales[J].Computers and Mathematics with Applications, 2010, 59(8):2658-2675. doi: 10.1016/j.camwa.2010.01.035

    CrossRef Google Scholar

    [5] LIN M.A Criterion for Generalized Exponential Dichotomy and Existence of Bounded Solutions[J].Acta Mathematiea Scientia, 2003, 23(5):619-626. doi: 10.3321/j.issn:1003-3998.2003.05.015

    CrossRef Google Scholar

    [6] JIANG L.Stronlgy Topological Linearization with Generalized Exponential Dichotomy[J].Nonlinear Analysis Theory Methods and Applications, 2007, 67(4):1102-1110. doi: 10.1016/j.na.2006.06.054

    CrossRef Google Scholar

    [7] JIANG L.Generalized Exponential Dichotomy and Global Linearization[J].Journal of Mathematical Analysis and Applications, 2006, 315(2):474-490.

    Google Scholar

    [8] 江良平.Palmer线性化定理的一个推广[J].应用数学, 2011, 24(1):150-157.

    Google Scholar

    [9] CASTA'NEDA A, ROBLEDO G.A Topological Equivalence Result for a Family of Nonlinear Difference Systems Having Generalized Exponential Dichotomy[J].Journal of Difference Equations and Applications, 2015, 22(9):1271-1291.

    Google Scholar

    [10] CHEN Y.Anti-Periodic Solutions for Semilinear Evolution Equations[J].Journal of Applied Mathematics and Computing, 2012, 40(9):1123-1130.

    Google Scholar

    [11] AIZICOVICI S, MCKIBBEN M, REICH S.Anti-Periodic Solutions to Nonmonotone Evolution Equations with Discontinuous Nonlinearities[J].Nonlinear Analysis Theory Methods and Applications, 2001, 43(2):233-251.

    Google Scholar

    [12] AHMAD B, ALSAEDI A.Existence of Solutions for Anti-Periodic Boundary Value Problems of Nonlinear Impulsive Functional Integro-Differential Equations of Mixed Type[J].Nonlinear Analysis Hybrid Systems, 2009, 3(4):501-509. doi: 10.1016/j.nahs.2009.03.007

    CrossRef Google Scholar

    [13] LUO Z, SHEN J, Nieto J J.Antiperiodic Boundary Value Problem for First-Order Impulsive Ordinary Differential Equations[J].Computers and Mathematics with Applications, 2005, 49(2-3):253-261. doi: 10.1016/j.camwa.2004.08.010

    CrossRef Google Scholar

    [14] YU Y, SHAO J, YUE G.Existence and Uniqueness of Anti-Periodic Solutions for a Kind of Rayleigh Equation with Two Deviating Arguments[J].Nonlinear Analysis Theory Methods and Applications, 2009, 71(10):4689-4695. doi: 10.1016/j.na.2009.03.032

    CrossRef Google Scholar

    [15] 文晓霞.一类反周期函数缺项插值问题的解[J].西南大学学报(自然科学版), 2018, 40(6):73-77.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(763) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Anti-Periodic Solutions for Discrete Systems with Generalized Exponential Dichotomy

Abstract: In this paper, the anti-periodic solutions have been studied for nonlinear discrete systems with generalized exponential dichotomy. Firstly, it is pointed out that if the homogeneous linear system has generalized exponential dichotomy. Secondly, the nonhomogeneous linear system admits an anti-periodic solution. And lastly, by using the above conclusion and the fixed point theorem, sufficient conditions for the existence of anti-periodic solutions for nonlinear discrete systems are established.

  • 指数型二分性理论在动力系统分析中有着重要的地位,它是线性自治系统的双曲率概念在非线性自治系统中的推广.离散动力系统的指数型二分性理论是众多学者所研究的重要课题[1-4].由于指数型二分性的条件较强,限制了许多动力学行为,因此人们将指数型二分性的概念进行了推广,得到广义指数型二分性的概念,并应用广义指数型二分性来研究动力系统的结构稳定性、拓扑等价性、Hartman线性化等问题[5-9].

    反周期问题常出现在物理过程的数学模型以及偏微分方程和抽象微分方程研究之中.动力系统的反周期性与周期性有着密切的联系.近年来,反周期系统的反周期解问题引起了国内外的一些学者的关注[10-15].本文主要研究非线性离散系统x(n+1)=A(n)x(n)+g(nx(n))的反周期解.借助广义指数型二分性理论并利用Banach不动点定理与Schauder不动点定理,给出上述系统N-反周期解存在的充分条件.

1.   预备知识
  • 在本文中,当ab$\mathbb{Z}$a < b时,记[ab]={aa+1,…,b}.对于线性系统

    其中A$\mathbb{Z}\to {{\mathbb{R}}^{d\times d}}$x$ \mathbb{Z}\to {{\mathbb{R}}^{d}}$Φ(n)是系统(1)的基本解矩阵,且满足Φ(0)=I.

    定义1  若存在投影P,以及常数Kα>0,使得

    则称系统(1)具有指数型二分性.

    定义2[9]  若存在投影P,常数K≥1,以及$\mathbb{Z}$上的非负函数α(n),

    使得

    则称系统(1)具有广义指数型二分性.

        若α(k)=α>0,则系统(1)具有指数型二分性.

    例1[9]     设$\mathrm{A}\left( n \right)=\left( \begin{matrix} b\left( n \right) & 0 \\ 0 & \frac{1}{b\left( n \right)} \\ \end{matrix} \right)$,其中0 < b(n)=b(-n) < 1,当n→∞时,b(n)单调趋近于1,则系统x(n+1)=A(n)x(n)具有广义指数型二分性,而不具有指数型二分性.

    对于离散动力系统

    其中x$\mathbb{Z}\to {{\mathbb{R}}^{d}}$F$\mathbb{Z}\times {{\mathbb{R}}^{d}}\to {{\mathbb{R}}^{d}}$.若存在N${{\mathbb{Z}}_{+}}$,对任意(nx)∈$\mathbb{Z}\times {{\mathbb{R}}^{d}}$

    则称系统(2)为N-反周期系统.

    若系统(2)的解x(n)满足

    则称x(n)为系统(2)的N-反周期解.

    命题1  若Φ(n)是系统(1)的基本解矩阵,且A(n+N)=A(n),则Φ(n+N)也是系统(1)的基本解矩阵,且对任意mn$\mathbb{Z}$

        由detΦ(n)≠0,Φ(n+1)=A(n)Φ(n)可知

    Φ(n+N)也是系统(1)的基本解矩阵,于是存在非奇异常矩阵C0${{\mathbb{R}}^{d\times d}}$,使得

    因此,

    考虑N-反周期系统

    其中:A$\mathbb{Z}\to {{\mathbb{R}}^{d\times d}}$A(n+N)=A(n),N${{\mathbb{Z}}_{+}}$f$\mathbb{Z}\to {{\mathbb{R}}^{d}}$f(n+N)=-f(n).记

    命题2  设系统(1)具有广义指数型二分性,A(n+N)=A(n),f(n+N)=-f(n),且$\underset{n\in \mathbb{Z}}{\mathop{\sup }}\, N(n, \left| f \right|<+\infty $

    是系统(3)的一个有界N-反周期解.

        显然x(n)是系统(3)的解,因为f(n+N)=-f(n),所以根据命题1

    因此x(n+N)=-x(n),这说明x(n)是系统(3)的N-反周期解.

    再证有界性.因为

    所以x(n)是系统(3)的一个有界N-反周期解.

2.   主要结果
  • 考虑N-反周期系统

    其中:A$\mathbb{Z}\to {{\mathbb{R}}^{d\times d}}$x$\mathbb{Z}\to {{\mathbb{R}}^{d}}$A(n+N)=A(n);g$\mathbb{Z}\times {{\mathbb{R}}^{d}}\to {{\mathbb{R}}^{d}}$g(n+Nx)=-g(n,-x).

    其中x$\mathbb{Z}\to {{\mathbb{R}}^{d}}$,并且定义X上的范数为$\left\| \mathit{\boldsymbol{x}} \right\| = \mathop {\max }\limits_{n \in \left[ {0,N - 1} \right]} \left| {\mathit{\boldsymbol{x}}\left( n \right)} \right|$,则(X,‖·‖)为Banach空间.

    定理1  设线性系统(1)关于投影P,常数K≥1以及非负函数α(n)具有广义指数型二分性,且A(n+N)=A(n),N${{\mathbb{Z}}_{+}}$g(n+Nx)=-g(n,-x),对任意n$\mathbb{Z}x$y${{\mathbb{R}}^{d}}$

    其中G(n),r(n)是非负函数,BL>0是常数,则系统(4)有唯一的有界N-反周期解.

        考虑N-反周期系统

    因为线性系统(1)关于投影P,常数K≥1以及非负函数α(n)具有广义指数型二分性,且N(nG)≤B,根据命题2,系统(5)存在有界解

    类似于命题2,对任意n$\mathbb{Z}$,当y(n+N)=-y(n)时,x(n+N)=-x(n).

    定义映射TXX

    T的不动点即为系统(4)的N-反周期解.对任意y1y2X

    因此,

    从而TX上的压缩映射,根据Banach不动点定理,映射T有唯一不动点,从而系统(4)有唯一的有界N-反周期解.

    定理2  设线性系统(1)关于投影P,常数K≥1以及非负函数α(n)具有广义指数型二分性,且A(n+N)=A(n),N${{\mathbb{Z}}_{+}}$g(n+Nx)=-g(n,-x),g(nx)关于x一致连续,对任意n$\mathbb{Z}$x${{\mathbb{R}}^{d}}$,有

    其中常数M>0,则系统(4)存在N-反周期解.

        设X0={x=x(n)∈X:‖xM},${\left\| \mathit{\boldsymbol{x}} \right\|_\infty } = \mathop {\sup }\limits_{n \in\mathbb{Z}} \left| {\mathit{\boldsymbol{x}}\left( n \right)} \right|$,则X0为Banach空间X的凸闭子集.

    定义映射T

    因为对任何x=x(n)∈X0

    因此T(X0)⊂X0T是一致有界的,再由g(nx)的一致连续性知T是连续映射.因为X0是Banach空间X的有界闭凸集,所以$\overline{T\left( {{X}_{0}} \right)}$X0的紧集,从而T是全连续算子,根据Schauder不动点定理,系统(4)存在N-反周期解.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return