Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 1
Article Contents

Xiao-jun LYU, Hai-ping XIE, Rui LI. Four Positive Periodic Solutions of a Delayed Predator-Prey Systems with Holling-Ⅱ Type Functional Response and Harvesting Terms[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(1): 6-12. doi: 10.13718/j.cnki.xsxb.2020.01.002
Citation: Xiao-jun LYU, Hai-ping XIE, Rui LI. Four Positive Periodic Solutions of a Delayed Predator-Prey Systems with Holling-Ⅱ Type Functional Response and Harvesting Terms[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(1): 6-12. doi: 10.13718/j.cnki.xsxb.2020.01.002

Four Positive Periodic Solutions of a Delayed Predator-Prey Systems with Holling-Ⅱ Type Functional Response and Harvesting Terms

More Information
  • Received Date: 24/03/2018
    Available Online: 20/01/2020
  • MSC: O175.14

  • In this paper, a delayed predator-prey systems with Holling-Ⅱ type functional response and Harvesting Terms has been investigated. With the generalized continuation theorem and differential inequality skills, the existence of four positive periodic solutions has been established for delayed predator-prey systems with Holling-Ⅱ type functional response and Harvesting Terms.
  • 加载中
  • [1] ZHAO K H, LI Y K.Four Positive Periodic Solutions to Two Species Parasitical System with Harvesting Terms[J].Computers and Mathematics with Applications, 2010, 59(1):2703-2710.

    Google Scholar

    [2] LI Y K, ZHAO K H, YUAN Y.Multiple Positive Periodic Solutions of n Species Delay Competition Systems with Harvesting Terms[J].Nonlinear Analysis:Real World Applications, 2011, 12(1):1013-1022.

    Google Scholar

    [3] 吕小俊, 李周红, 赵凯宏.带有脉冲和收获项的一类非自治延迟浮游生物系统4个正概周期解的存在性[J].昆明理工大学学报(自然学科版), 2016, 41(4):139-145.

    Google Scholar

    [4] 吕小俊, 张天伟, 赵凯宏.研究带有收获项的延迟Lotka-Volterra型区域竞争系统八个正周期解的存在性[J].应用数学学报, 2016, 39(2):237-248.

    Google Scholar

    [5] ZHANG C M, CHEN W C, YANG Y.Periodic Solutions and Global Asymptotic Stability of a Delayed Discrete Predator-Prey System with Holling-Ⅱ Type Functional Response[J].Journal of Systems Science and Complexity, 2006, 19(4):449-460. doi: 10.1007/s11424-006-0449-x

    CrossRef Google Scholar

    [6] LIU Q M, XU R.Periodic Solutions for a Delayed One-Predator and Two-Prey System with Holling Type-Ⅱ Functional Response[J].Ann Diff Eqs, 2005, 21(1):14-28.

    Google Scholar

    [7] ZHANG W P, ZHU D M, BI P.Multiple Positive Periodic Solutions of a Delayed Discrete Predator-Prey System with Type Ⅳ Functional Responses[J].Applied Mathematics Letters, 2007, 20(10):1031-1038. doi: 10.1016/j.aml.2006.11.005

    CrossRef Google Scholar

    [8] GAINES R E, MAWHIN J L.Coincidence Degree and Nonlinear Differential Equations, Lecture Note in Mathematics[M]. Berlin:Springer, 1977.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(956) PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Four Positive Periodic Solutions of a Delayed Predator-Prey Systems with Holling-Ⅱ Type Functional Response and Harvesting Terms

Abstract: In this paper, a delayed predator-prey systems with Holling-Ⅱ type functional response and Harvesting Terms has been investigated. With the generalized continuation theorem and differential inequality skills, the existence of four positive periodic solutions has been established for delayed predator-prey systems with Holling-Ⅱ type functional response and Harvesting Terms.

  • 在过去20年中,各种时滞微分方程被广泛应用于人口动力学中[1-6].由于生物种群系统受到食物、天气和气候等环境因素的影响,种群的数量往往随时间发生周期变化,所以运用周期系统反映种群系统的特点更加符合实际情况.其次,随着人类经济社会的高速发展,生物资源的开发和对种群数量的定期收获已被广泛应用于渔业和野生动物管理中,故种群系统中增加收获项是非常有必要的.文献[1-2]利用叠合度理论中的Mawhin连续定理研究了两类带有收获项的食饵-捕食系统多个正周期解的存在性.文献[3]利用叠合度理论中的Mawhin连续定理分析了一类带有脉冲和收获项的浮游生物系统多个概周期解的存在性.然而,种群系统的动力学特征不仅受到脉冲和收获项的影响,还受到功能反应函数的影响[5-7].功能反应函数反映捕食者在单位时间内捕食食饵的数量.至今,很少有学者研究带有收获项和功能反应函数的时滞种群系统.本文利用一般连续理论和不等式技巧,分析以下带有收获项的时滞Holling-Ⅱ型食饵-捕食系统4个正周期解的存在性.

    其中:x1(t)和x2(t)分别表示t时刻食饵和捕食者的种群密度;m表示捕获的半饱和值是一个非负常数;τl(t)(l=1,2,3)≥0,ri(t),aij(t)(i=1,2,j=1,2),hi(t)>0均是周期为ω的连续函数,且$\int {\begin{array}{*{20}{c}} w\\ 0 \end{array}} ri\left( t \right){\rm{d}}t > 0\left( {i = 1, 2} \right)$r1(t)表示食饵的内部增长率,r2(t)表示捕食者的死亡率,a11(t)表示食饵内部的竞争率,a22(t)表示捕食者内部的竞争率,a12(t)表示捕食者的捕获能力,hi(t)(i=1,2)表示收获函数;x1(t)(r1(t)-a11(t)x1(t-τ1(t)))表示没有捕食者时,食饵的种群增长率;$\frac{{{x_1}\left( t \right)}}{{1 + m{x_1}\left( t \right)}}$表示功能反应函数,反映捕食者的捕食能力.

1.   预备知识
  • 引理1[8](一般连续定理)若XZ均为Banach空间,L:DomLXZ是一个零指标的Fredholm算子,NΩ×[0, 1]→Z,(xλ)↦N(xλ)是一个L-压缩算子,连续映射PXXQZZ满足ImP=KerL,ImL=KerQ=Im(I-Q),J:ImQ→KerL是一个同构映射.

    (a) 对于任意λ∈(0,1),x∂Ω∩DomL,有LxλN(xλ);

    (b) 对于任意x∂Ω∩KerL,有QN(x,0)≠0;

    (c) deg{JQN(·,)|KerLΩ∩KerL,0}≠0.

    则对于任意的λ∈[0,1),方程Lx=λN(xλ)在集合Ω上至少存在一个解,方程Lx=N(x,1)在Ω上至少存在一个解.

    为了方便,令

    其中f(t)是一个连续的ω-周期函数.

    为了获得时滞Holling-Ⅱ型食饵-捕食系统(1)存在4个正周期解的充分条件,需做如下假设:

    (H1) r12eωr1 > 4a11 h1a21>mr2

    (H2) ${\overline r _1} > {\overline a _{12}}k_2^ + + \sqrt {{{\overline a }_{11}}{{\overline h }_1}} \left( {1 + {{\rm{e}}^{w{{\overline r }_1}}}} \right)$

    (H3)${\overline a _{21}} > \left( {{{\overline r }_2} + \sqrt {{{\overline a }_{22}}{{\overline h }_2}} \left( {1 + {{\rm{e}}^{\frac{w}{m}{{\overline a }_{21}}}}} \right)} \right)\left( {m + \frac{1}{{{k_1}}}} \right)$

    其中:

2.   4个正周期解的存在性
  • 定理1  若条件(H1)-(H3)成立,则种群系统(1)至少存在4个ω-正周期解.

      由指数变换xi(t)=eui(t)i=1,2,将系统(1)改写为系统(2):

    接下来构造集合:

    定义范数$\left\| \mathit{\boldsymbol{u}} \right\| = \left\| {{{\left( {{u_1}\left( t \right), {u_2}\left( t \right)} \right)}^{\rm{T}}}} \right\| = \max \left\{ {\mathop {\max }\limits_{t \in \left[ {0, w} \right]} \left| {{u_1}\left( t \right)} \right|, \mathop {\max }\limits_{t \in \left[ {0, w} \right]} \left| {{u_2}\left( t \right)} \right|} \right\}$,显然,集合XZ是赋予范数‖·‖的Banach空间.

    令:

    $L\mathit{\boldsymbol{u = \dot u}}$$P\mathit{\boldsymbol{u = }}\frac{1}{w}\int {_0^w} \mathit{\boldsymbol{u}}\left( t \right){\rm{d}}t$uX$Q{\rm{z}} = \frac{1}{w}\int {_0^w} {\rm{z}}\left( t \right){\rm{d}}t$,z∈Z.

    分析可知:KerL=${{\mathbb{R}}^{2}}$,ImL={z|z∈Z$\int{_{0}^{w}}{\rm{z}}\left( t \right)\text{d}t=0$}是集合Z上的闭子集,dimKerL=co dimIm L=2,则L是一个零指标的Fredholm算子. L的广义逆算子Kp:lmL→KerP∩DomL为:${{K}_{\text{p}}}\left( {\rm{z}} \right)=\int{_{0}^{t}}\mathrm{z}\left( s \right)\text{d}s-\frac{1}{w}\int{_{0}^{w}\int{_{0}^{t}}}\mathrm{z}\left( s \right)\text{d}s\ \text{d}t$.所以

    这里

    显然,算子QNKp(I-Q)N是连续的,对于任意的有界开集ΩXQN(Ω×[0, 1])和Kp(I-Q)N(Ω×[0, 1])是相对压缩的,N是集合Ω×[0, 1]上L-压缩的.

    为了运用引理1分析时滞Holling-Ⅱ型食饵-捕食系统(2)的周期解,我们需要找到合适的有界开区域Ω.接下来考虑方程Lu=λN(uλ),∀λ∈(0,1),即

    假设ui(t)(i=1,2)是满足系统(4)的ω-周期解.则存在ξiηi∈[0,ω],有${u_i}\left( {{\xi _i}} \right) = \mathop {\min }\limits_{t \in \left[ {0, w} \right]} {u_i}\left( t \right)$${u_i}\left( {{\eta _i}} \right) = \mathop {\max }\limits_{t \in \left[ {0, w} \right]} {u_i}\left( t \right)$i=1,2.

    现在,将等式(4)的左右两边同时从0到ω积分可得

    由等式(5)可知$\int {_0^w} \left( {{r_1}\left( t \right) - {a_{11}}\left( t \right){{\rm{e}}^{{u_1}\left( {t - {\tau _1}\left( t \right)} \right)}} - {h_1}\left( t \right){{\rm{e}}^{ - {u_1}\left( t \right)}}} \right){\rm{d}}t > 0$,又因为∀t∈[0,ω],有

    因此

    由不等式(7)可得

    因为

    从而lnk1- < u1(ξ1) < u1(η1) < lnk1+.

    同理,由等式(6)可知:

    从而,

    由不等式(8)可得${\overline a _{22}}{{\rm{e}}^{{u_2}\left( {{\xi _2}} \right)}} + {\overline r _2} - \frac{{{{\overline a }_{21}}}}{m} < 0$,即${u_2}\left( {{\xi _2}} \right) < \ln \frac{{{{\overline a }_{21}} - m{{\overline r }_2}}}{{m{{\overline a }_{22}}}}$.

    又因为∀t∈[0,ω]有${u_2}(t) = {u_2}\left( {{\xi _2}} \right) + \int {_{{\xi _2}}^t} {\overline u _2}\left( s \right){\rm{d}}s < {u_2}\left( {{\xi _2}} \right) + \frac{w}{m}{\overline a _{21}}$,所以${u_2}({\eta _2}) < {u_2}\left( {{\xi _2}} \right) + \frac{w}{m}{\overline a _{21}} < \ln \frac{{{{\overline a }_{21}} - m{{\overline r }_2}}}{{m{{\overline a }_{22}}}} + \frac{w}{m}{\overline a _{21}}: = \ln k_2^ + $.

    同理,由等式(6)可知

    从而

    由不等式(9)可得${\overline h _2}{{\rm{e}}^{ - {u_2}\left( {{\eta _2}} \right)}} + {\overline r _2} - \frac{{{{\overline a }_{21}}}}{m} < 0$,即${u_2}\left( {{\eta _2}} \right) > \ln \frac{{m{{\overline h }_2}}}{{{{\overline a }_{21}} - m{{\overline r }_2}}}$.

    又因为∀t∈[0,ω],有${u_2}\left( t \right) = {u_2}\left( {{\eta _2}} \right) - \int {_t^{{\eta _2}}} {\overline u _2}\left( s \right){\rm{d}}s > \ln \frac{{m{{\overline h }_2}}}{{{{\overline a }_{21}} - m{{\overline r }_2}}} - \frac{w}{m}{\overline a _{21}}: = \ln k_2^ - $,所以$\ln k_2^ - < {u_2}\left( {{\xi _2}} \right) < {u_2}\left( {{\eta _2}} \right) < \ln k_2^ + $.

    由式(5)可知$\int {_0^w({r_1}\left( t \right)} - {a_{11}}\left( t \right){{\rm{e}}^{{u_1}\left( {t - {\tau _1}\left( t \right)} \right)}} - {a_{12}}\left( t \right){{\rm{e}}^{{u_2}\left( t \right)}} - {h_1}\left( t \right){{\rm{e}}^{ - {u_1}\left( t \right)}}){\rm{d}}t < 0$,进一步可得

    ${u_1}\left( {{\eta _1}} \right) < {u_1}\left( {{\xi _1}} \right) + w{\overline r _1}$和不等式(10),可得

    ${u_1}\left( {{\xi _1}} \right) < \ln \frac{{{{\overline r }_1} - {{\overline a }_{12}}k_2^ + - \sqrt {{{\left( {{{\overline r }_1} - {{\overline a }_{12}}k_2^ + } \right)}^2} - 4{{\overline a }_{11}}{{\overline h }_1}{{\rm{e}}^{w{{\overline r }_1}}}} }}{{2{{\overline a }_{11}}{{\rm{e}}^{w{{\overline r }_1}}}}}$时,

    由条件(H2)不难证明k1- < l1- < l1+ < k1+.

    由等式(6)可知$\int {_0^w} \left( {{r_2}\left( t \right) + {a_{22}}\left( t \right){{\rm{e}}^{{u_2}(t - {\tau _3}\left( t \right)}} + {h_2}\left( t \right){{\rm{e}}^{ - {u_2}\left( t \right)}} - \frac{{{a_{21}}\left( t \right){k_1}}}{{1 + m{k_1}}}} \right){\rm{d}}t > 0$,从而

    ${u_2}\left( {{\eta _2}} \right) < {u_2}\left( {{\xi _2}} \right) + \frac{w}{m}{\overline a _{21}}$和不等式(11)可得

    ${u_2}\left( {{\xi _2}} \right) < \ln \frac{{\left( {\frac{{{{\overline a }_{21}}{k_1}}}{{1 + m{k_1}}} - {{\overline r }_2}} \right) - \sqrt {{{\left( {\frac{{{{\overline a }_{21}}{k_1}}}{{1 + m{k_1}}} - {{\overline r }_2}} \right)}^2} - 4{{\overline a }_{22}}{{\overline h }_2}{{\rm{e}}^{\frac{w}{m}{{\overline a }_{21}}}}} }}{{2{{\overline a }_{22}}{{\rm{e}}^{\frac{w}{m}{{\overline a }_{21}}}}}}$时,

    由条件(H3)不难证明k2- < l2- < l2+ < k2+.

    通过以上分析可知,对于任意t∈[0,ω],有

    现在构造4个开集:

    Ωi(i=1,2,3,4)是空间X的有界开子集,且ΩiΩj=φ(iji=1,2,j=1,2).因此,Ωi(i=1,2,3,4)满足引理1中条件(a).

    接下来验证引理1的条件(b)是成立的.首先证明当uΩi∩KerL=∂Ωi${{\mathbb{R}}^{2}}$时,QN(u,0)≠(0,0)T成立,i=1,2,3,4.

    利用反证法,假设u∂Ωi∩KerL=∂Ωi${{\mathbb{R}}^{2}}$时,QN(u,0)=(0,0)T成立,i=1,2,3,4.即常向量u=(u1u2)T∂Ωii=1,2,3,4.满足:

    由系统(13)的第一个等式可得

    不难验证lnk1- < u1-* < lnl1- < lnl1+ < u1+* < lnk1+,则uΩ1${{\mathbb{R}}^{2}}$uΩ2${{\mathbb{R}}^{2}}$uΩ3${{\mathbb{R}}^{2}}$uΩ4${{\mathbb{R}}^{2}}$.因此,此结论与u∈Ωi∩R2矛盾,所以,引理1的条件(b)成立.

    最后验证引理1的条件(c)是成立的.接下来,分析代数方程(12)的4个不同的解:(u1+*u2+*),(u1-*u2+*),(u1-*u2-*),(u1+*u2-*),这里

    容易验证:(u1+*u2+*)∈Ω1,(u1-*u2+*)∈Ω2,(u1-*u2-*)∈Ω3,(u1+*u2-*)∈Ω4.

    由于Ker L=lm Q,令J=I.由Leray-Schauder度的定义可得:∀i=1,2,3,4.有

    以上分析证明Ωi(i=1,2,3,4)满足引理1的所有条件.所以,系统(2)至少存在4个不同的ω-正周期解,即带有收获项的时滞HollingⅡ型食饵-捕食系统(1)至少存在4个不同的ω-正周期解.

Reference (8)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return