-
一直以来,关于流形自身的几何结构与其拓扑性质间某种联系的探究,备受人们关注. L2调和形式作为一种有力的工具,通常被用于获取流形的一些拓扑信息. 例如,应用Hodge-de Rham定理,m维完备定向黎曼流形Mm上的L2调和1-形式空间与1次可约化L2上的同调群同构[1]. 文献[2]的结论表明,Mm上非抛物端的个数不超过L2调和1-形式空间的维数加1. 因此,在流形上找到充分的几何条件讨论L2调和1-形式的存在性及其空间维数的有限性具有重要意义.
作为Bernsstein定理的自然推广,Fischer-Colbrie-Schoen和de Carmo-Peng先后证明了欧氏空间$\mathbb{R}^3$中完备定向极小曲面在稳定性条件下是平面. 在高维情形下,文献[3]考虑了L2调和1-形式,证得$\mathbb{R}^{m+1}$中完备定向极小超曲面Mm在稳定性条件下不存在非平凡的L2调和1-形式. 随后,文献[4]在m+1维完备定向黎曼流形Nm+1具有非负bi-Ricci曲率(参见文献[5]的定义1.2)的假设下,将文献[3]的工作推广到了Nm+1中的完备定向非紧极小超曲面Mm上,证明了Mm在稳定性条件下不存在非平凡的L2调和1-形式. 文献[5]对Nm+1的bi-Ricci曲率做类似限制,证明了Nm+1中具有常平均曲率的完备定向非紧超曲面Mm在强稳定条件下不存在非平凡的L2调和1-形式. 文献[6]考虑了双曲空间Hm+1中的完备稳定极小超曲面Mm,证得:若Mm的Laplace算子的第一特征值λ1(M)>(2m-1)(m-1),则Mm不存在非平凡的L2调和1-形式. 紧接着,文献[7]将该结论推广至更一般的黎曼流形Nm+1中的完备非紧非全测地稳定极小超曲面Mm,假定Nm+1的截面曲率满足KN>K(其中K是非正数),λ1(M)>-K(2m-1)(m-1),得到了与文献[6]相同的结论. 文献[8]考虑了球空间中稳定极小超曲面的情形,证得:$\mathbb{S}^{m+1}$(m≤4)中完备非紧稳定极小超曲面Mm不存在非平凡的L2调和1-形式.
极小超曲面Mm具有有限的指数是指Mm存在一个紧致子集Ω,使得M\Ω是稳定的. 文献[9]将稳定性条件替换为具有有限的指数,证得:$\mathbb{R}^{m+1}$(m≥3)中完备定向极小超曲面Mm在指数有限的假设条件下,其上非平凡的L2调和1-形式空间的维数有限. 并进一步应用文献[2]的结论,证明了Mm仅有有限多个端.之后,文献[10]考虑了任意的黎曼流形Nm+1(m≥3)中完备非紧极小超曲面Mm,在Nm+1截面曲率KN满足-k2 < KN < 0(其中k是非零常数)及Mm(m≥3)指数有限的假设条件下,对任意的$\frac{m-2}{m-1} < p < \frac{m}{m-1}$,证得:若Mm的Laplace算子的第一特征值
则Mm上非平凡的L2p调和1-形式空间的维数有限,特别地,取p=1,进一步得到Mm仅有有限多个端.
此外,Mm的全曲率定义为
其中A为第二基本形式[11]. 去掉稳定性假设,对子流形的全曲率加以条件限制,得到了诸多关于L2调和形式的消灭定理及有限性定理. 文献[12]证明了欧氏空间中完备定向极小超曲面在全曲率有上界的假设条件下,不存在非平凡的L2调和1-形式. 文献[13-16]考虑了双曲空间及截面曲率有下界的Hadamard流形的子流形,在全曲率有上界或有限的假设条件下,得到了L2调和1-形式的消灭定理及有限性定理. 文献[17-18]在同样的假设条件下,得到了球空间中子流形上L2调和1-形式的消灭定理及有限性定理.
记A1(M)和Δ分别为流形Mm上的1次外微分形式空间及Laplace算子[19],则Mm上的Lp调和1-形式空间可表示为
本文考虑球空间$\mathbb{S}^{m+1}$(m≥3)中完备定向非紧极小超曲面Mm上的Lp调和1-形式,得到如下定理:
定理1 设Mm(m≥3)是球空间$\mathbb{S}^{m+1}$中完备定向非紧极小超曲面. 对任意的2≤p < $\frac{2 m}{m-1}$,若Mm具有有限的指数,则H1(Lp(M))的维数有限. 进而,Mm仅有有限多个非抛物端.
定理2 设Mm(m≥3)是球空间$\mathbb{S}^{m+1}$中具有有限指数的完备定向非紧极小超曲面. 对任意的p>$\frac{2 m}{m-1}$,若Mm的全曲率满足
则H1(Lp(M))的维数有限,C0是仅依赖于m的正值常数.
全文HTML
-
设Mm(m≥3)是球空间$\mathbb{S}^{m+1}$中的完备非紧定向极小超曲面,Mm上的稳定算子定义为
其中Ric是$\mathbb{S}^{m+1}$的Ricci曲率,n是Mm在$\mathbb{S}^{m+1}$中的单位法向量场,|A|是Mm的第二基本形式模长. 记Ω为Mm的一个有界区域,则Ω的指数ind(LΩ)定义为L在Ω上负特征值的个数,Mm的指数ind(L)定义为
易见,ind(L)=0当且仅当Mm是稳定的. Mm具有有限的指数,则存在一个紧致子集D⊂M,使得M\D是稳定的(参见文献[20]的命题1),即对任意的f∈C0∞(M\D),有
其中dM表示Mm的体积元. 记Bx0(r0)为Mm上的以r0为半径、x0为球心的测地球.由稳定算子特征值的区域单调性,若D⊂Bx0(r0),则M\Bx0(r0)是稳定的. 不失一般性,设D=Bx0(r0),便有
为证明主要定理,我们需要如下引理:
引理1[21] 设Mm是m维完备非紧黎曼流形,E是Mm上Lp调和q-形式空间的一个有限维子空间,则对任意的x∈M,r>0,存在ω∈E,使得
引理2[18] 设Mm(m≥3)是球空间$\mathbb{S}^{m+n}$中的完备非紧子流形,则对任意f∈C0∞(M),有
其中C0>0是仅依赖于m的正常数,H是Mm的平均曲率向量.
-
定理1的证明 对任意ω∈H1(Lp(M)),使用Bochner公式[22]有
其中ω#表示ω的对偶向量场. 另一方面,直接计算易得
联立(2),(3)式,并结合Kato不等式[23]
便有
依据文献[24]对子流形Ricci曲率的估计,对$\mathbb{S}^{m+1}$中的极小超曲面Mm有
因此,对任意的p≥0,结合(4),(5)式,直接计算有
以下为方便起见,积分都省去体积元.
一方面,由(1)式,令$f=\eta|\boldsymbol{\omega}|^{\frac{p}{2}}$,对任意的η∈C0∞(M\Bx0(r0)),有
由于$\mathbb{S}^{m+1}$沿n的Ricci曲率Ric(n)=m. 应用散度定理,(7)式可化为
将(6)式代入(8)式,可以得到
由(9)式和假设2≤p < $\frac{2 m}{m-1}$,有
其中常数C1>0,C2>0,且仅与m,p的取值有关. 此外,应用引理2(Mm极小,故H=0,令f=$\eta|\boldsymbol{\omega}|^{\frac{p}{2}}$),并结合Cauchy-Schwarz不等式,有
联立(10),(11),(12)式,便有
其中C3=C0(2C1+2+m2C2).
对(13)式,由η∈C0∞(M\D)的任意性,可选取r>r0+1,使得对常数C4>0,任意的x∈M,
则有
其中C5=C3C4. 令r→∞,又因ω∈H1(Lp(M)),所以
对(14)式的左边项应用Hölder不等式,有
将(15)式代入(14)式,可以得到
因此
其中C6=Vol(Bx0$\left.\left(r_0+2\right)\right)^{\frac{2}{m}}$·C5+1.
另一方面,记T=$\left.\left|(m-1)-\frac{m-1}{m}\right| \boldsymbol{A}\right|^2 \mid$,则由(5)式可知
对任一x∈M,记Bx(1)为M上以x为球心、1为半径的测地球. 对任意给定的p≥2,ξ∈C0∞Bx(1),(17)式两边同乘ξ2|ω|p-2并积分,有
对(18)式的左边项应用散度定理及Cauchy-Schwarz不等式并整理,可得
另外,应用Cauchy-Schwarz不等式,我们有
于是,联立(19),(20)式,并结合引理2,令$f=\xi|\boldsymbol{\omega}|^{\frac{p}{2}}$,则有
其中
易见,E≤mp+1≤m2p,F≤p≤m2p,所以,(21)式可化为
对上述p≥2,ξ∈C0∞(Bx(1)),给定k(k=0,1,2,…),令$p_k=\frac{2 m^k}{(m-2)^k}$,$\rho_k=\frac{1}{2}+\frac{1}{2^k}$,使得对x′∈Bx(1),有
则由(22)式,我们有
(23) 式不等号两边各项指数同乘$\frac{1}{p_k}$,并记C7=C0m2·(23+$\sup\limits_{B_x(1)} T$+1),可得
进一步,对(24)式,从k=0开始作指数迭代,有
容易算得$\prod\limits_{k=0}^{\infty}\left(C_7 2^k p_k\right)^{\frac{1}{p_k}}$收敛,所以存在仅依赖于m,$\sup\limits_{B_x(1)} T$的常数C8>0,使得
对上述x∈M,选取x∈Bx0(r0+1),使得|ω|(x)=$ \sup\limits_{\left({B_{x_0}}r_0+1\right)}$ |ω|(x),则由(25)式有
因此,记C9= (C8)2,可以得到
最后,联立(16),(26)式,便有
其中C10=C6·C9. 于是,对H1(Lp(M))的任意一个有限维子空间E,结合(27)式和引理1,有
记
则dim E≤C11,其中C11>0是仅与m,p,Vol(Bx0(r0+2)),$\sup\limits_{{{{B}}_{x_0}}\left(r_0+2\right)} T$有关的常数. 因此,H1(Lp(M))的维数有限. 进一步,若取p=2,则Mm上L2调和1-形式空间的维数有限,所以Mm最多仅有有限多个非抛物端. 定理1证毕.
定理2的证明 任意的ω∈H1(Lp(M)),由定理1的证明,(9)式成立,即
记S(η)=$\left(\int_{\operatorname{supp} \eta}|\boldsymbol{A}|^m\right)^{\frac{1}{m}}$,使用Hölder不等式和Sobolev不等式,便有
对任意的ε>0,由Cauchy-Schwarz不等式,有
联立(28),(29)式,可以得到
其中
选取足够小的ε>0,由于条件假设p>$\frac{2 m}{m-1}$,故G>0. 不难验证,若
则E>0,F>0.
令$C_1^{\prime}=\frac{G}{E}$,$C_2^{\prime}=\frac{G}{F}$,则
其中C′1>0,C′2>0是仅依赖于m,p的常数,即在定理的假设条件下同样有(10),(11)式成立(仅相差常数部分). 同理,应用引理2有(12)式成立. 因此,由定理1的证明可得H1(Lp(M))的维数有限. 定理2证毕.