留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类位置不变的极值指数估计量

上一篇

下一篇

蒲钰瑶, 陈守全. 一类位置不变的极值指数估计量[J]. 西南师范大学学报(自然科学版), 2023, 48(4): 75-79. doi: 10.13718/j.cnki.xsxb.2023.04.010
引用本文: 蒲钰瑶, 陈守全. 一类位置不变的极值指数估计量[J]. 西南师范大学学报(自然科学版), 2023, 48(4): 75-79. doi: 10.13718/j.cnki.xsxb.2023.04.010
PU Yuyao, CHEN Shouquan. A Class of Location-Invariant Extreme Value Index Estimators[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(4): 75-79. doi: 10.13718/j.cnki.xsxb.2023.04.010
Citation: PU Yuyao, CHEN Shouquan. A Class of Location-Invariant Extreme Value Index Estimators[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(4): 75-79. doi: 10.13718/j.cnki.xsxb.2023.04.010

一类位置不变的极值指数估计量

详细信息
    作者简介:

    蒲钰瑶,硕士研究生,主要从事极值统计的研究 .

    通讯作者: 陈守全,博士,副教授
  • 中图分类号: O211.4

A Class of Location-Invariant Extreme Value Index Estimators

  • 摘要: 本文提出了一类位置不变的重尾极值估计量, $ \hat{\gamma}_n\left(k_0, k, r\right)=\frac{\frac{1}{k_0} \sum\nolimits_{i=1}^{k 0}\left(\frac{1}{r}\left(\left(\frac{X_{n-i, n}-X_{n-k, n}}{X_{n-k 0, n}-X_{n-k, n}}\right)^r-1\right)\right)}{1+\frac{r}{k_0} \sum\nolimits_{i=1}^{k 0}\left(\frac{1}{r}\left(\left(\frac{X_{n-i, n}-X_{n-k, n}}{X_{n-k 0, n}-X_{n-k, n}}\right)^r-1\right)\right)} $ 其中: \lt i \gt γ \lt /i \gt \gt 0, \lt i \gt k \lt /i \gt \lt sub \gt 0 \lt /sub \gt 是小于 \lt i \gt k \lt /i \gt 的正整数. 得到了此位置不变极值估计量的弱相合性和渐近正态性,并根据其渐近展开式得到 \lt i \gt k \lt /i \gt \lt sub \gt 0 \lt /sub \gt 的最优选择.
  • 加载中
  • [1] JENKINSON A F. The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements [J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(348): 158-171. doi: 10.1002/qj.49708134804
    [2] RESNICK S. Extreme Values, Regular Variation, and Point Processes [M]. Colorado: Springer, 1987.
    [3] HILL B M. A Simple General Approach to Inference about the Tail of a Distribution [J]. The Annals of Statistics, 1975, 3(5): 1163-1174.
    [4] DE HAAN L, FERREIRA A. Extreme Value Theory [M]. New York: Springer, 2006.
    [5] 王嫣然, 彭作祥. 基于分块的重尾指数估计量的推广[J]. 西南师范大学学报(自然科学版), 2019, 44(1): 25-28. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2019.01.005
    [6] 胡爽, 彭作祥. 基于分块思想的Pickands型估计量[J]. 西南大学学报(自然科学版), 2019, 41(5): 53-58. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201905010.htm
    [7] PAULAUSKAS V. A New Estimator for a Tail Index [J]. Acta Applicandae Mathematica, 2003, 79(1-2): 55-67.
    [8] PAULAUSKAS V, VAIČIULIS M. On an Improvement of Hill and some other Estimators [J]. Lithuanian Mathematical Journal, 2013, 53(3): 336-355. doi: 10.1007/s10986-013-9212-x
    [9] ALVES M I F. A Location Invariant Hill-Type Estimator [J]. Extremes, 2001, 4(3): 199-217. doi: 10.1023/A:1015226104400
    [10] LING C X, PENG Z X, NADARAJAH S. A Location Invariant Moment-Type Estimator. I [J]. Theory of Probability and Mathematical Statistics, 2008, 76: 23-31. doi: 10.1090/S0094-9000-08-00728-X
    [11] FRAGA ALVES M I, GOMES M I, HAAN L, et al. Mixed Moment Estimator and Location Invariant Alternatives [J]. Extremes, 2009, 12(2): 149-185. doi: 10.1007/s10687-008-0073-3
    [12] LI J N, PENG Z X, NADARAJAH S. Asymptotic Normality of Location Invariant Heavy Tail Index Estimator [J]. Extremes, 2010, 13(3): 269-290. doi: 10.1007/s10687-009-0088-4
    [13] DE HAAN L, STADTMÜLLER U. Generalized Regular Variation of Second Order [J]. Journal of the Australian Mathematical Society Series A Pure Mathematics and Statistics, 1996, 61(3): 381-395.
    [14] RÉNYI A. On the Theory of Order Statistics [J]. Acta Mathematica Academiae Scientiarum Hungarica, 1953, 4(3-4): 191-231. doi: 10.1007/BF02127580
    [15] LI J N, PENG Z X, NADARAJAH S. A Class of Unbiased Location Invariant Hill-Type Estimators for Heavy Tailed Distributions [J]. Electronic Journal of Statistics, 2008(2): 829-847.
  • 加载中
计量
  • 文章访问数:  722
  • HTML全文浏览数:  722
  • PDF下载数:  140
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-02
  • 刊出日期:  2023-04-20

一类位置不变的极值指数估计量

    通讯作者: 陈守全,博士,副教授
    作者简介: 蒲钰瑶,硕士研究生,主要从事极值统计的研究
  • 西南大学 数学与统计学院,重庆 400715

摘要: 本文提出了一类位置不变的重尾极值估计量, $ \hat{\gamma}_n\left(k_0, k, r\right)=\frac{\frac{1}{k_0} \sum\nolimits_{i=1}^{k 0}\left(\frac{1}{r}\left(\left(\frac{X_{n-i, n}-X_{n-k, n}}{X_{n-k 0, n}-X_{n-k, n}}\right)^r-1\right)\right)}{1+\frac{r}{k_0} \sum\nolimits_{i=1}^{k 0}\left(\frac{1}{r}\left(\left(\frac{X_{n-i, n}-X_{n-k, n}}{X_{n-k 0, n}-X_{n-k, n}}\right)^r-1\right)\right)} $ 其中: \lt i \gt γ \lt /i \gt \gt 0, \lt i \gt k \lt /i \gt \lt sub \gt 0 \lt /sub \gt 是小于 \lt i \gt k \lt /i \gt 的正整数. 得到了此位置不变极值估计量的弱相合性和渐近正态性,并根据其渐近展开式得到 \lt i \gt k \lt /i \gt \lt sub \gt 0 \lt /sub \gt 的最优选择.

English Abstract

  • 设{Xnn≥1}是一列独立同分布的随机变量序列,其共同的分布函数为F(x),X1,n≤…≤XnnX1,…,Xn的顺序统计量. 如果F属于极值吸引场[1]

    其中$ \gamma \in \mathbb{R}, 1+\gamma x \geqslant 0$. 这意味着,如果存在规范化常数$a_n>0, b_n \in \mathbb{R} $,使得当$n \rightarrow \infty $,对所有$x \in \mathbb{R} $,都有

    则可以记为FD(Gγ) [2],这等价于$ U(t):=F^{\leftarrow}\left(1-\left(\frac{1}{t}\right)\right)$是指数为γ的正则变化函数. 本文主要讨论极值指数γ>0的分布函数,即分布函数为重尾分布函数. 对所有的x>0,

    对于极值指数的研究,当γ>0时,文献[3]最早提出了著名的Hill估计量. 也有一些基于不同思想的估计量:将样本分块,在每个块中取两个最大值的比率[4-6],然后将线性函数f(x)=x而不是对数函数应用于这些比率. 文献[7]将函数族fr(t)引入到次序统计量中,得到估计量

    其中

    借助文献[8]得到广义Hill估计量

    本文主要讨论$ \hat{\gamma}_n(k, r)$的位置不变估计量[9-11],参照文献[12]中的方法,其对应的位置不变估计量的形式为

    本文在二阶条件[13]下证明其渐近性质.

  • 在下文中,设FD(Gγ),γ>0,假设存在一个函数A(t)>0,有如下二阶条件成立

    由条件(2)可得

    其中,对任意的中间序列k,满足

    定理1  若对γ>0有二阶条件(7)成立,且当$n \rightarrow \infty $时,中间序列k满足条件(9),则对γr < 1,有

    定理2  假设二阶条件(7)成立,当$n \rightarrow \infty $,中间序列k0k满足$k \rightarrow \infty, k_0 \rightarrow \infty \text {, 且 } \frac{k_0}{k} \rightarrow 0 $,则对$r <\frac{1}{2 \gamma} $,渐近分布表达式为

    其中

    此外,当$n \rightarrow \infty $时,如果存在$ \lambda_1 \in \mathbb{R}, \lambda_2 \in \mathbb{R}$使得$\sqrt{k_0}\left(\frac{k_0}{k}\right)^\gamma \rightarrow \lambda_1, \quad \sqrt{k_0} A\left(\frac{n}{k}\right) \rightarrow \lambda_2 $,那么有

    定理3  假设二阶条件(7)成立,A(t)~ctρ,其中ρ < 0,c≠0,令

    中间序列$ k_0^{\text {opt }}$是使得$ AMSE\left(\hat{\gamma}_n\left(k_0, k, r\right)\right)$最小的k0

    (ⅰ) 如果$ \gamma \leqslant-\rho \text {, 则 } k_0^{\mathrm{opt}}=k_0^{(1)}$

    (ⅱ) 如果γ≥-ρ

    (a)  若$ k \ll n^{-\rho(2 \gamma+1) /(\gamma(-2 \rho+1))} \text {, 则 } k_o^{\mathrm{opt}}=k_0^{(1)}$

    (b)  $ k \gg n^{-\rho(2 \gamma+1) /(\gamma(-2 \rho+1))}$,若c < 0, 则$k_0^{\mathrm{opt}}=k_0^{(3)} $,若c>0, 则$k^{\mathrm{opt}}=k_0^{(2)} $

    (c)  若$ k \sim D n^{-\rho(2 \gamma+1) /(\gamma(-2 \rho+1))}, D \neq 0$,那么$k_0^{\text {opt }} \sim D_1 n^{\frac{-2 \rho}{-2 \rho+1}}, D_1 \equiv D_1(\gamma, \rho, r, c, D) $满足

    其中

  • 设{Ynn≥1}是分布函数为$ F_Y(y)=1-\frac{1}{y}$y≥1的独立同分布的随机变量序列,Y1,n≤…≤YnnY1,…,Yn的顺序统计量,对于任意中间序列k,由于$ \left\{X_i\right\}_{i=1}^n \stackrel{d}{=}\left\{U\left(Y_i\right)\right\}_{i=1}^n \text { 且 } \frac{n}{k} Y_{n-k, n} \stackrel{p}{\rightarrow} 1, $,由Renyi’s表达式[14]可得

    此外,对于序列{Ynn≥1},有

    定理1的证明

    最后一步由大数定律可得. 又因为

    所以,

    其中$ r <\frac{1}{\gamma}$.

    定理2的证明  首先定义

    利用泰勒展式,有

    成立. 因此可得

    由此可得

    那么

    这就得到$ \hat{\gamma}_n\left(k_0, k, r\right)$的渐近分布表达式,由此可得$ \hat{\gamma}_n\left(k_0, k, r\right)$的渐近正态性(14). 证毕.

    定理3的证明  类似文献[15]中的定理2.3可得.

参考文献 (15)

目录

/

返回文章
返回