-
开放科学(资源服务)标识码(OSID):
-
犬弓首蛔虫(Toxocara canis,T. canis)是一种广泛分布于世界各地的人兽共患寄生线虫. T. canis生活史复杂,其虫卵随粪便排出后,在适宜的自然环境下发育为感染性虫卵[1-3]. 终末宿主摄入感染性虫卵后,幼虫经循环系统移行至肠道发育为成虫. 非特异宿主摄入感染性虫卵后,幼虫不能发育为成虫,而是移行到神经、肌肉、内脏等组织器官,成为滞育的感染性L3幼虫[4-5]. 人(特别是儿童)因污染的水、土壤、水果和蔬菜中的感染性虫卵或食入来自非特异性宿主如牛、羊、兔、鸡等未煮熟的肉/内脏中滞育的感染性幼虫而感染. 根据侵入器官、感染强度、迁移持续时间及年龄和宿主的免疫反应,可以导致多种临床综合征[6-7]. 此外,感染性虫卵还可引起心肌内膜炎、脑膜炎、眼内炎、哮喘及癫痫等疾病,因此研究犬弓首蛔虫在兽医学及公共卫生学上都具有重要意义.
超氧化物歧化酶(Superoxide Dismutase,SOD)是一种广泛存在于动物、植物和微生物体内的金属酶类[8-10]. 根据辅基所结合的金属离子不同,SOD可分为4种类型,分别为Cu/Zn-SOD,Mn-SOD,Fe-SOD及Ni-SOD[11],只在某些极少数原核细菌中报道有NiSOD存在[12]. SOD是维持抗氧化系统的第一道防线,它能够催化超氧阴离子自由基歧化生成过氧化氢(H2O2)和氧(O2),在保护机体细胞免受氧自由基毒害中起到至关重要的作用,且与很多疾病的发生和发展紧密相关[13]. 寄生虫SOD在抗氧化、免疫逃避和虫体存活等过程中起着重要的作用. 据报道,大片吸虫(Fasciola gigantica)分泌排泄蛋白SOD诱导的抗氧化作用与虫体逃避中性粒细胞、巨噬细胞或树突状细胞产生活性氧(Reactive Oxygen Species,ROS)的免疫反应有关[14];疟原虫(Plasmodium vinckei) SOD通过降解宿主红细胞的血红蛋白产生ROS,以利于红细胞内疟原虫的存活[15];克氏锥虫(Trypanosoma cruzi) MnSOD缺乏会加剧线粒体电子传递链的功能障碍,并造成患病动物心脏的过度氧化损伤[16].
目前,对于犬弓首蛔虫超氧化物歧化酶的研究较少. 本研究运用分子生物学技术,首先克隆Tc-sod基因并进行序列分析;随后构建Tc-sod/pET-32a原核表达载体并制备多克隆抗体,以期为进一步研究Tc-SOD的生物学功能奠定基础.
Molecular Characterization and Prokaryotic Expression of Toxocara canis Superoxide Dismutase
-
摘要:
为探究犬弓首蛔虫(Toxocara canis,T. canis)超氧化物歧化酶(Superoxide Dismutase,SOD)的分子特性,根据GenBank中登录的Tc-sod基因序列(GenBank:AAB00227.1),以T. canisc DNA为模板对Tc-sod全长基因进行扩增,并进行序列分析和多重序列比对;同时构建Tc-sod/pET-32a原核表达载体,经ITPG诱导表达,对重组蛋白进行纯化并制备多克隆抗体. 结果显示Tc-sod全长基因为573 bp,共编码190个氨基酸;多重序列分析表明Tc-SOD的氨基酸序列与曼氏血吸虫、异尖线虫、美洲板口线虫、马来丝虫、犬钩口线虫均具有SOD-Cu保守结构域. 种系发育分析发现Tc-SOD与马来丝虫进化关系较近. SDS-PAGE结果显示重组蛋白Tc-SOD的大小约为37 ku,以可溶性形式表达;利用Ni-NTA亲和层析柱纯化蛋白,以70 mmol/L咪唑进行洗脱时可获得高纯度的目的蛋白;将纯化后的重组蛋白免疫新西兰大白兔制备多克隆抗体,间接ELISA检测显示抗体滴度>1∶320 000,表明重组蛋白的免疫原性较好;Western Blot结果显示抗体能与Tc-SOD蛋白特异性结合,表明抗体特异性高.
Abstract:To study the molecular characteristics of Toxocara canis superoxide dismutase (Tc-sod), the full-length cDNA of Tc-sod gene was amplified as template according to the genomic data of Tc-sod (GenBank: AAB00227.1) and sequence analysis and multiple sequence alignment were performed. The prokaryotic expression vector Tc-sod/pET-32a was constructed and induced by IPTG. The recombinant protein was purified and polyclonal antibody was prepared. The results showed that the full-length sequence of the Tc-sod gene was 573 bp, which encode 190-amino acids. Multiple alignment found that the amino acid sequence of Tc-SOD shared a conserved domain of SOD-Cu with that of Schistosoma mansoni, Anisakis simplex, Necator americanus, Brugia malayi and Ancylostoma caninum. The phylogenetic tree analysis suggested that Tc-SOD was closely related to the sequence of B. malayi. SDS-PAGE showed that the recombinant protein Tc-SOD was about 37 ku in size and expressed in soluble form. The protein was purified by Ni-NTA affinity chromatography. The high purity protein was obtained by elution with 70 mmol/L imidazole, and used to immunize the New Zealand white rabbits to prepare polyclonal antibody. Indirect ELISA showed that the antibody titer was > 1∶320 000, indicating that the recombinant protein had good immunogenicity. The Western Blot result showed that the antibody could specifically bind to Tc-SOD, indicating that the antibody had good specificity.
-
Key words:
- Toxocara canis /
- superoxide dismutase /
- molecular characteristics /
- prokaryotic expression /
- polyclonal antibody .
-
[1] ZHENG W B, ZOU Y, HE J J, et al. Global Profiling of LncRNAs-miRNAs-mRNAs Reveals Differential Expression of Coding Genes and Non-Coding RNAs in the Lung of Beagle Dogs at Different Stages of Toxocara Canis Infection[J]. International Journal for Parasitology, 2021, 51(1): 49-61. [2] WU T, BOWMAN D D. Visceral Larval Migrans of Toxocara Canis and Toxocara Cati in Non-Canidand Non-Felid Hosts[J]. Advances in Parasitology, 2020, 109(1): 63-88. [3] MA G X, HOLLAND C V, WANG T, et al. Human Toxocariasis[J]. The Lancet Infectious Diseases, 2018, 18(1): e14-e24. doi: 10.1016/S1473-3099(17)30331-6 [4] FAKHRI Y, GASSER R B, ROSTAMI A, et al. Toxocara Eggs in Public Places Worldwide-a Systematic Review and Meta-Analysis[J]. Environmental Pollution, 2018, 242(10): 1467-1475. [5] CHEN J, LIU Q, LIU G H, et al. Toxocariasis: A Silent Threat with a Progressive Public Health Impact[J]. Infectious Diseases of Poverty, 2018, 7(1): 59. doi: 10.1186/s40249-018-0437-0 [6] 李芳, 陈绍基, 谭纯, 等. 犬弓首蛔虫Tc-PEBP的分子特性及组织表达分析[J]. 西南大学学报(自然科学版), 2022, 44(3): 75-82. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2022.03.009 [7] DESPOMMIER D. Toxocariasis: Clinical Aspects, Epidemiology, Medical Ecology, and Molecular Aspects[J]. Clinical Microbiology Reviews, 2003, 16(2): 265-272. doi: 10.1128/CMR.16.2.265-272.2003 [8] 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. [9] 黄泳, 杨艺, 赵颖, 等. NEFA对牛骨骼肌细胞线粒体功能及脂肪酸代谢相关基因的影响[J]. 南方农业学报, 2023, 54(7): 2115-2125. doi: 10.3969/j.issn.2095-1191.2023.07.023 [10] 孙旋辉, 邴旭文, 丁炜东, 等. 高温应激对鳜幼鱼血清生化指标及肝脏SOD基因和热休克蛋白基因表达的影响[J]. 南方农业学报, 2022, 53(12): 3539-3547. doi: 10.3969/j.issn.2095-1191.2022.12.025 [11] 李爱华, TONGSOO KIM. 猪囊尾蚴铜/锌超氧化物歧化酶(Cu/ZnSOD)基因的克隆和表达[J]. 中国人兽共患病学报, 2006, 22(12): 1124-1128. doi: 10.3969/j.issn.1002-2694.2006.12.010 [12] ZHAO H Q, ZHANG R F, YAN X Y, et al. Superoxide Dismutase Nanozymes: An Emerging Star for Anti-Oxidation[J]. Journal of Materials Chemistry B, 2021, 9(35): 6939-6957. doi: 10.1039/D1TB00720C [13] SHENG Y W, ABREU I A, CABELLI D E, et al. Superoxide Dismutases and Superoxide Reductases[J]. Chemical Reviews, 2014, 114(7): 3854-3918. [14] LALRINKIMA H, RAINA O K, CHANDRA D, et al. Isolation and Characterization of Cu/Zn-Superoxide Dismutase in Fasciola Gigantica[J]. Experimental Parasitology, 2015, 152(7): 1-7. [15] PRAKASH K, GOYAL M, SONI A, et al. Molecular Cloning and Biochemical Characterization of Iron Superoxide Dismutase from the Rodent Malaria Parasite Plasmodium Vinckei[J]. Parasitology International, 2014, 63(6): 817-825. doi: 10.1016/j.parint.2014.07.004 [16] IVANB H, SILVIA P S, SILVIA G. TrypanothioneReductase and Superoxide Dismutase as Current Drug Targets for TrypanosomaCruzi: an Overview of Compounds with Activity AgainstChagas Disease[J]. Current Medicinal Chemistry, 2017, 24(11): 1066-1138. [17] TAK Y J, PARK J H, RHIM H, et al. ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin[J]. International Journal of Molecular Sciences, 2020, 21(20): 7525. [18] YAN Z, SPAULDING H R. Extracellular Superoxide Dismutase, a Molecular Transducer of Health Benefits of Exercise[J]. Redox Biology, 2020, 32(10): 101508. [19] BASAK D, UDDIN M N, HANCOCK J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC)[J]. Cancers, 2020, 12(11): 3336. [20] CASE A J, DOMANN F E. Manganese Superoxide Dismutase is Dispensable for Post-Natal Development and Lactation in the Murine Mammary Gland[J]. Free Radical Research, 2012, 46(11): 1361-1368. [21] COX G M, HARRISON T S, MCDADE H C, et al. Superoxide Dismutase Influences the Virulence of Cryptococcus Neoformans by Affecting Growth within Macrophages[J]. Infection and Immunity, 2003, 71(1): 173-180. [22] MOUSTAFA A, PERBANDT M, LIEBAU E, et al. Crystal Structure of an Extracellular Superoxide Dismutase from Onchocerca Volvulus and Implications for Parasite-Specific Drug Development[J]. ActaCrystallographica Section F Structural Biology Communications, 2022, 78(6): 232-240. [23] WONG P C, WAGGONER D, SUBRAMANIAM J R, et al. Copper Chaperone for Superoxide Dismutase is Essential to Activate Mammalian Cu/Zn Superoxide Dismutase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6): 2886-2891. [24] BROWN N M, TORRES A S, DOAN P E, et al. Oxygen and the Copper Chaperone CCS Regulate Posttranslational Activation of Cu, Zn Superoxide Dismutase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5518-5523. [25] FENG D D, GAO X, KONG W H, et al. An Extracellular Cu/Zn Superoxide Dismutase from Neocaridina Denticulata Sinensis: CDNA Cloning, mRNA Expression and Characterizations of Recombinant Protein[J]. Fish & Shellfish Immunology, 2022, 128(10): 547-556.